Dynamic Programming

Algorithm types

- Algorithm types we will consider include:
 - Simple recursive algorithms
 - Backtracking algorithms
 - Divide and conquer algorithms
- Dynamic programming algorithms
 - difference from divide and conquer algorithms
 - Greedy algorithms
 - Branch and bound algorithms
 - Brute force algorithms
 - Randomized algorithms

Counting coins

- To find the minimum number of US coins to make any amount, the greedy method always works
 - At each step, just choose the largest coin that does not overshoot the desired amount: $31 \not = 25$
- The greedy method would not work if we did not have 5¢ coins
 - For 31 cents, the greedy method gives seven coins (25+1+1+1+1+1+1), but we can do it with four (10+10+10+1)
- The greedy method also would not work if we had a 21¢ coin
 - For 63 cents, the greedy method gives six coins (25+25+10+1+1+1), but we can do it with three (21+21+21)
- How can we find the minimum number of coins for any given coin set?

Coin set for examples

• For the following examples, we will assume coins in the following denominations:

1¢ 5¢ 10¢ 21¢ 25¢

• We'll use 22¢ and 63¢ as our goal

This example is taken from:
 Data Structures & Problem Solving using Java by Mark Allen Weiss

A simple solution

- We always need a 1¢ coin, otherwise no solution exists for making one cent
- To make K cents:
 - If there is a K-cent coin, then that one coin is the minimum
 - Otherwise, for each value i < K,
 - Find the minimum number of coins needed to make i cents
 - Find the minimum number of coins needed to make K i cents
 - Choose the i that minimizes this sum
- This algorithm can be viewed as divide-and-conquer, or as brute force
 - This solution is very recursive
 - It requires exponential work

A simple solution

Example: collect 7 cents

Simple code for the coin problem

```
public static void main(String[] args) {
    int[] coins = { 1, 5, 10, 21, 25 };
    int solveForThisAmount = 63;
    int[] solution;
    // try simple solution
    solution = makeChange1(coins, solveForThisAmount);
    System.out.println("solution: " +
                       Arrays.toString(solution));
    // try dynamic programming solution
    solution = makeChange2(coins, solveForThisAmount);
    System.out.println("solution: " +
                       Arrays.toString(solution));
```

makeChange1, part 1

```
/**
 * Find the minimum number of coins required.
 * @param coins The available kinds of coins.
 * @param n The desired total.
 * @return An array of how many of each coin.
 * /
private static int[] makeChange1(int[] coins, int n) {
    int numberOfDifferentCoins = coins.length;
    int[] solution;
    // if there is a single coin with value n, use it
    for (int i = 0; i < numberOfDifferentCoins; i += 1) {</pre>
        if (coins[i] == n) {
            solution = new int[numberOfDifferentCoins];
            solution[i] = 1;
            return solution;
    // else try all combinations of i and n-i coins
```

makeChange1, part 2

```
// else try all combinations of i and n-i coins
solution = new int[numberOfDifferentCoins];
int leastNumberOfCoins = Integer.MAX VALUE;
for (int i = 1; i < n; i += 1) {
    int[] solution1 = makeChange1(coins, i);
    int[] solution2 = makeChange1(coins, n - i);
    int newCoinCount =
        totalCoinCount(solution1, solution2);
    if (newCoinCount < leastNumberOfCoins) {</pre>
        leastNumberOfCoins = newCoinCount;
        solution = arraySum(solution1, solution2);
return solution;
```

Another solution

- We can reduce the problem recursively by choosing the first coin, and solving for the amount that is left
- For 63¢:
 - One 1¢ coin plus the best solution for 62¢
 - One 5¢ coin plus the best solution for 58¢
 - One 10¢ coin plus the best solution for 53¢
 - One 21¢ coin plus the best solution for 42¢
 - One 25¢ coin plus the best solution for 38¢
- Choose the best solution from among the 5 given above
- Instead of solving 62 recursive problems, we solve 5
- This is still a very expensive algorithm

A dynamic programming solution

- Idea: Solve first for one cent, then two cents, then three cents, etc., up to the desired amount
 - Save each answer in an array!
- For each new amount N, compute all the possible pairs of previous answers which sum to N
 - For example, to find the solution for 13ϕ ,
 - First, solve for all of 1¢, 2¢, 3¢, ..., 12¢
 - Next, choose the best solution among:
 - Solution for 1¢ + solution for 12¢
 - Solution for 2¢ + solution for 11¢
 - Solution for $3\phi + \text{solution for } 10\phi$
 - Solution for 4¢ + solution for 9¢
 - Solution for 5¢ + solution for 8¢
 - Solution for 6¢ + solution for 7¢

Example

- Suppose coins are 1¢, 3¢, and 4¢
 - There's only one way to make 1¢ (one coin)
 - To make 2ϕ , try $1\phi+1\phi$ (one coin + one coin = 2 coins)
 - To make 3ϕ , just use the 3ϕ coin (one coin)
 - To make 4ϕ , just use the 4ϕ coin (one coin)
 - To make 5¢, try
 - $1 \not c + 4 \not c$ (1 coin + 1 coin = 2 coins)
 - $2\phi + 3\phi$ (2 coins + 1 coin = 3 coins)
 - The first solution is better, so best solution is 2 coins
 - To make 6¢, try
 - $1 \not c + 5 \not c$ (1 coin + 2 coins = 3 coins)
 - $2\phi + 4\phi$ (2 coins + 1 coin = 3 coins)
 - $3\phi + 3\phi$ (1 coin + 1 coin = 2 coins) best solution
 - Etc.

makeChange2

```
/**
 * Find the minimum number of coins required.
 * @param coins The available kinds of coins.
 * @param desiredTotal The desired total.
 * @return An array of how many of each coin.
 */
public static int[] makeChange2(int[] coins,
                                int desiredTotal) {
    int numberOfDifferentCoins = coins.length;
    int[][] solutions = new int[desiredTotal + 1][];
    int[] best = new int[desiredTotal + 1];
    solutions[0] = new int[numberOfDifferentCoins];
    best[0] = 0;
    for (int n = 1; n <= desiredTotal; n++) {
        solveFor2(n, coins, solutions, best);
    return solutions[desiredTotal];
}
```

solveFor2, part 1

```
/**
 * Finds the minimum number of coins for each value <= n.
 * @param n The largest amount to be solved for.
 * @param coins The available kinds of coins.
 * @param solutions Arrays of how many of each kind of coin.
 * @param best The number of coins in each solution array.
private static void solveFor2(int n, int[] coins,
                              int[][] solutions, int[] best) {
    int numberOfDifferentCoins = coins.length;
    // if there is a single coin with the value n, use it
    for (int i = 0; i < numberOfDifferentCoins; i += 1) {</pre>
        if (coins[i] == n) {
            solutions[n] =
                new int[numberOfDifferentCoins];
            solutions[n][i] = 1;
            best[i] = 1;
            return;
       else try all combinations of i and n-i coins
```

solveFor2, part 2

How good is the algorithm?

- The first algorithm is recursive, with a branching factor of up to 62
 - Possibly the average branching factor is somewhere around half of that (31)
 - The algorithm takes exponential time, with a large base
- The second algorithm is much better—it has a branching factor of 5
 - This is exponential time, with base 5
- The dynamic programming algorithm is O(N*K), where N is the desired amount and K is the number of different kinds of coins

Comparison with divide-and-conquer

 Divide-and-conquer algorithms split a problem into separate subproblems, solve the subproblems, and combine the results for a solution to the original problem

Example: Quicksort

Example: Mergesort

Example: Binary search

- Divide-and-conquer algorithms can be thought of as top-down algorithms
- In contrast, a dynamic programming algorithm proceeds by solving small problems, remembering the results, then combining them to find the solution to larger problems
- Dynamic programming can be thought of as bottom-up

Comparison with divide-and-conquer

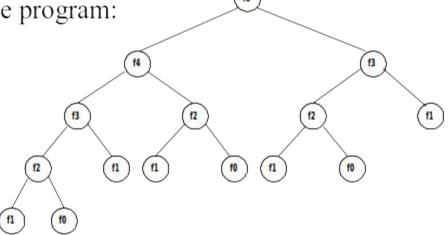
- Like divide-and-conquer, solve problem by combining the solutions to sub-problems.
- Differences between divide-and-conquer and DP:
 - Independent sub-problems, solve sub-problems independently and recursively, (so same sub(sub)problems solved repeatedly)
 - Sub-problems are dependent, i.e., sub-problems share sub-sub-problems, every sub(sub)problem solved just once, solutions to sub(sub)problems are stored in a table and used for solving higher level sub-problems.
- DP reduces computation by
 - Solving subproblems in a bottom-up fashion.
 - Storing solution to a subproblem the first time it is solved.
 - Looking up the solution when subproblem is encountered again.

Fibonacci sequence (1/4)

• <u>Fibonacci sequence</u>: 1, 1, 2, 3, 5, 8, 13, 21, ...

$$F_i = 1$$
 if $i == 1$ or $i == 2$ (assume $F_0 = 0$)
 $F_i = F_{i-1} + F_{i-2}$ if $i \ge 3$

• Solved by a recursive program:



- Much replicated computation is done.
- It should be solved by a simple loop.

Fibonacci Sequence (2/4)

Recursive logic:

 F₁ = F₂ = 1
 If i > 2 then F_i = F_{i-1} + F_{i-2}

 Directly translates into a

recursive algorithm F: F(i) { if (i = 1) or (i = 2) $x \leftarrow 1$ else $x \leftarrow F(i-1) + F(i-2)$ return x }

F's call tree is exponential;
 F is recomputed many times
 for the same input value!

• We can speed things up by storing output values of F in an array A_F
F(i) {
if (A_F!= NULL) return
A_F
if (i = 1) or (i = 2)
x ← 1
else
x ← F(i-1) + F(i-2)
A_F ← x
return x

◆ Since there are n cells in A_F and each cell takes O(1) time to compute, this is O(n)!

Example 2: Binomial Coefficients

- $(x + y)^2 = x^2 + 2xy + y^2$, coefficients are 1,2,1
- $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$, coefficients are 1,3,3,1
- $(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$, coefficients are 1,4,6,4,1
- $(x + y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$, coefficients are 1,5,10,10,5,1
- The n+1 coefficients can be computed for $(x + y)^n$ according to the formula c(n, i) = n! / (i! * (n - i)!)for each of i = 0...n
- The repeated computation of all the factorials gets to be expensive
- We can use dynamic programming to save the factorials as we go

Solution by dynamic programming

Each row depends only on the preceding row
Only linear space and quadratic time are needed
This algorithm is known as Pascal's Triangle

$$c(n,k) \rightarrow (1+x)^n \dots c x^k$$

Solution by dynamic programming

```
n c(n,0) c(n,1) c(n,2) c(n,3) c(n,4) c(n,5) c(n,6) 
0 1 
1 1 1 
2 1 2 1 
3 1 3 3 1 
4 1 4 6 4 1
```

Each row depends only on the preceding row

Only linear space and quadratic time are needed

This algorithm is known as Pascal's Triangle

$$c(n,k) \rightarrow (1+x)^n$$
 .. $c x^k$
 $c(n,k) = c(n-1,k-1)+c(n-1,k)$
 $c(n,0) = c(n,1) = 1$

Solution by dynamic programming

Optimal Substructure

Let's work it out for n=4 and k=2.

Answer: 6

We know:

- C(n, k) = C(n-1, k-1) + C(n-1, k)
- C(n, 0) = C(n, n) = 1

$$C(4, 2) = Sum of$$

$$\circ$$
 C(2, 0) = 1

$$\blacksquare$$
 C(1, 0) = 1

$$\blacksquare$$
 C(1, 1) = 1

•
$$C(3, 2) = Sum of$$

$$\circ$$
 C(2, 1) = Sum of

$$\blacksquare$$
 C(1, 1) = 1

$$C(1, 0) = 1$$

$$\circ$$
 C(2, 2) = 1

Recursive Solution

```
// Returns value of Binomial Coefficient C(n, k)
int binomialCoeff(int n, int k)
{
   // Base Cases
   if (k==0 || k==n)
      return 1;

   // Recur
   return binomialCoeff(n-1, k-1) + binomialCoeff(n-1, k);
}
```

```
C(5, 2)

(C(4, 1)

(C(4, 2)

(C(3, 0) C(3, 1)

(C(2, 0) C(2, 1)

(C(2, 0) C(2, 1)

(C(1, 0) C(1, 1)

(
```

Dynamic Programming

Construct a temporary array C[][] in a bottom-up manner

```
Returns value of Binomial Coefficient C(n, k)
int binomialCoeff(int n, int k)
   int C[n+1][k+1];
   int i, j;
   // Caculate value of Binomial Coefficient in bottom up manner
   for (i = 0; i \le n; i++)
        for (j = 0; j \le min(i, k); j++)
            // Base Cases
            if (j == 0 || j == i)
                C[i][i] = 1;
            // Calculate value using previosly stored values
            else
                C[i][i] = C[i-1][i-1] + C[i-1][i];
    return C[n][k];
```

The algorithm in Java

```
public static int binom(int n, int m) {
   int[]b = new int[n + 1];
   b[0] = 1;
  for (int i = 1; i <= n; i++) {
      b[i] = 1;
      for (int j = i - 1; j > 0; j - -) {
         b[i] += b[i - 1];
   return b[m];
```

 Source: Data Structures and Algorithms with Object-Oriented Design Patterns in Java by Bruno R. Preiss

The principle of optimality, I

- Dynamic programming is a technique for finding an optimal solution
- The principle of optimality applies if the optimal solution to a problem always contains optimal solutions to all subproblems
- Example: Consider the problem of making N¢ with the fewest number of coins
 - Either there is an N¢ coin, or
 - The set of coins making up an optimal solution for N¢ can be divided into two nonempty subsets, n₁¢ and n₂¢
 - If either subset, $n_1 \not\in$ or $n_2 \not\in$, can be made with fewer coins, then clearly $N \not\in$ can be made with fewer coins, hence solution was *not* optimal

The principle of optimality, II

- The principle of optimality holds if
 - Every optimal solution to a problem contains...
 - ...optimal solutions to all subproblems
- The principle of optimality does *not* say
 - If you have optimal solutions to all subproblems...
 - ...then you can combine them to get an optimal solution
- Example: In US coinage,
 - The optimal solution to 7¢ is 5¢ + 1¢ + 1¢, and
 - The optimal solution to 6¢ is 5¢ + 1¢, but
 - The optimal solution to 13ϕ is not $5\phi + 1\phi + 1\phi + 5\phi + 1\phi$
- But there is *some* way of dividing up 13¢ into subsets with optimal solutions (say, 11¢ + 2¢) that will give an optimal solution for 13¢
 - Hence, the principle of optimality holds for this problem

The 0-1 knapsack problem

- A thief breaks into a house, carrying a knapsack...
 - He can carry up to 25 pounds of loot
 - He has to choose which of N items to steal
 - Each item has some weight and some value
 - "0-1" because each item is stolen (1) or not stolen (0)
 - He has to select the items to steal in order to maximize the value of his loot, but cannot exceed 25 pounds
- A greedy algorithm does not find an optimal solution
- A dynamic programming algorithm works well
- This is similar to, but not identical to, the coins problem
 - In the coins problem, we had to make an *exact* amount of change
 - In the 0-1 knapsack problem, we can't *exceed* the weight limit, but the optimal solution may be *less* than the weight limit
 - The dynamic programming solution is similar to that of the coins problem

Comments

- Dynamic programming relies on working "from the bottom up" and saving the results of solving simpler problems
 - These solutions to simpler problems are then used to compute the solution to more complex problems
- Dynamic programming solutions can often be quite complex and tricky
- Dynamic programming is used for optimization problems, especially ones that would otherwise take exponential time
 - Only problems that satisfy the principle of optimality are suitable for dynamic programming solutions
- Since exponential time is unacceptable for all but the smallest problems, dynamic programming is sometimes essential

The End