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Algorithm types

■ Algorithm types we will consider include:
■ Simple recursive algorithms
■ Backtracking algorithms
■ Divide and conquer algorithms
■ Dynamic programming algorithms

■ difference from divide and conquer algorithms
■ Greedy algorithms
■ Branch and bound algorithms
■ Brute force algorithms
■ Randomized algorithms
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Counting coins
■ To find the minimum number of US coins to make any amount, 

the greedy method always works
■ At each step, just choose the largest coin that does not overshoot the 

desired amount: 31¢=25
■ The greedy method would not work if we did not have 5¢ coins

■ For 31 cents, the greedy method gives seven coins (25+1+1+1+1+1+1), 
but we can do it with four (10+10+10+1)

■ The greedy method also would not work if we had a 21¢ coin
■ For 63 cents, the greedy method gives six coins (25+25+10+1+1+1), but 

we can do it with three (21+21+21)
■ How can we find the minimum number of coins for any given 

coin set?
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Coin set for examples

■ For the following examples, we will assume coins in the 
following denominations:
     1¢     5¢     10¢     21¢     25¢

■ We’ll use 22¢  and 63¢ as our goal

■ This example is taken from:
Data Structures & Problem Solving using Java  by  Mark Allen Weiss
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A simple solution

■ We always need a 1¢ coin, otherwise no solution exists for 
making one cent

■ To make K cents:
■ If there is a K-cent coin, then that one coin is the minimum
■ Otherwise, for each value i < K,

■ Find the minimum number of coins needed to make i cents
■ Find the minimum number of coins needed to make K - i cents

■ Choose the i that minimizes this sum

■ This algorithm can be viewed as divide-and-conquer, or as brute 
force
■ This solution is very recursive
■ It requires exponential work



A simple solution

Example: collect 7 cents
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Simple code for the coin problem
■ public static void main(String[] args) {

    int[] coins = { 1, 5, 10, 21, 25 };
    int solveForThisAmount = 63;
    int[] solution;
    // try simple solution
    solution = makeChange1(coins, solveForThisAmount);
    System.out.println("solution: " +
                       Arrays.toString(solution));
    // try dynamic programming solution
    solution = makeChange2(coins, solveForThisAmount);
    System.out.println("solution: " +
                       Arrays.toString(solution));
}
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makeChange1, part 1
■ /**

 * Find the minimum number of coins required.
 * @param coins The available kinds of coins.
 * @param n The desired total.
 * @return An array of how many of each coin.
 */
private static int[] makeChange1(int[] coins, int n) {
    int numberOfDifferentCoins = coins.length;
    int[] solution;
    // if there is a single coin with value n, use it
    for (int i = 0; i < numberOfDifferentCoins; i += 1) {
        if (coins[i] == n) {
            solution = new int[numberOfDifferentCoins];
            solution[i] = 1;
            return solution;
        }
    }
    // else try all combinations of i and n-i coins
    ...
} 8



makeChange1, part 2
    // else try all combinations of i and n-i coins
    solution = new int[numberOfDifferentCoins];
    int leastNumberOfCoins = Integer.MAX_VALUE;
    for (int i = 1; i < n; i += 1) {
        int[] solution1 = makeChange1(coins, i);
        int[] solution2 = makeChange1(coins, n - i);
        int newCoinCount =
            totalCoinCount(solution1, solution2);
        if (newCoinCount < leastNumberOfCoins) {
            leastNumberOfCoins = newCoinCount;
            solution = arraySum(solution1, solution2);
        }
    }
    return solution;
}
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Another solution
■ We can reduce the problem recursively by choosing the 

first coin, and solving for the amount that is left
■ For 63¢:

■ One 1¢ coin plus the best solution for 62¢
■ One 5¢ coin plus the best solution for 58¢
■ One 10¢ coin plus the best solution for 53¢
■ One 21¢ coin plus the best solution for 42¢
■ One 25¢ coin plus the best solution for 38¢

■ Choose the best solution from among the 5 given above
■ Instead of solving 62 recursive problems, we solve 5
■ This is still a very expensive algorithm 
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A dynamic programming solution
■ Idea: Solve first for one cent, then two cents, then three cents, 

etc., up to the desired amount
■ Save each answer in an array !

■ For each new amount N, compute all the possible pairs of 
previous answers which sum to N
■ For example, to find the solution for 13¢,

■ First, solve for all of 1¢, 2¢, 3¢, ..., 12¢
■ Next, choose the best solution among:

■ Solution for 1¢   +   solution for 12¢
■ Solution for 2¢   +   solution for 11¢
■ Solution for 3¢   +   solution for 10¢
■ Solution for 4¢   +   solution for 9¢
■ Solution for 5¢   +   solution for 8¢
■ Solution for 6¢   +   solution for 7¢
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Example
■ Suppose coins are 1¢, 3¢, and 4¢

■ There’s only one way to make 1¢ (one coin)
■ To make 2¢, try 1¢+1¢ (one coin + one coin = 2 coins)
■ To make 3¢, just use the 3¢ coin (one coin)
■ To make 4¢, just use the 4¢ coin (one coin)
■ To make 5¢, try

■ 1¢ + 4¢ (1 coin + 1 coin = 2 coins)
■ 2¢ + 3¢ (2 coins + 1 coin = 3 coins)
■ The first solution is better, so best solution is 2 coins

■ To make 6¢, try
■ 1¢ + 5¢ (1 coin + 2 coins = 3 coins)
■ 2¢ + 4¢ (2 coins + 1 coin = 3 coins)
■ 3¢ + 3¢ (1 coin + 1 coin = 2 coins) – best solution

■ Etc.



makeChange2

/**
 * Find the minimum number of coins required.
 * @param coins The available kinds of coins.
 * @param desiredTotal The desired total.
 * @return An array of how many of each coin.
 */
public static int[] makeChange2(int[] coins,
                                int desiredTotal) {
    int numberOfDifferentCoins = coins.length;
    int[][] solutions = new int[desiredTotal + 1][]; 
    int[] best = new int[desiredTotal + 1]; 
    solutions[0] = new int[numberOfDifferentCoins];
    best[0] = 0;
    for (int n = 1; n <= desiredTotal; n++) {
        solveFor2(n, coins, solutions, best);
    }
    return solutions[desiredTotal];
}
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solveFor2, part 1
/**
 * Finds the minimum number of coins for each value <= n.
 * @param n The largest amount to be solved for.
 * @param coins The available kinds of coins.
 * @param solutions Arrays of how many of each kind of coin.
 * @param best The number of coins in each solution array.
 */
private static void solveFor2(int n, int[] coins,
                              int[][] solutions, int[] best) {
    int numberOfDifferentCoins = coins.length;
    // if there is a single coin with the value n, use it
    for (int i = 0; i < numberOfDifferentCoins; i += 1) {
        if (coins[i] == n) {
            solutions[n] =
                new int[numberOfDifferentCoins];
            solutions[n][i] = 1;
            best[i] = 1;
            return;
        }
    }
    // else try all combinations of i and n-i coins
    ...
}
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solveFor2, part 2
    // else try all combinations of i and n-i coins
    int leastNumberOfCoins = Integer.MAX_VALUE;
    for (int i = 1; i < n; i += 1) {        
        int coinCount = best[i] + best[n - i];
        if (coinCount < leastNumberOfCoins) {
            leastNumberOfCoins = coinCount;
            best[n] = coinCount;
            solutions[n] = arraySum(solutions[i],
                                    solutions[n - i]);
        }
    }
}

15



16

How good is the algorithm?
■ The first algorithm is recursive, with a branching factor 

of up to 62
■ Possibly the average branching factor is somewhere around 

half of that (31)
■ The algorithm takes exponential time, with a large base

■ The second algorithm is much better—it has a 
branching factor of 5
■ This is exponential time, with base 5

■ The dynamic programming algorithm is O(N*K), where 
N is the desired amount and K is the number of different 
kinds of coins
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Comparison with divide-and-conquer

■ Divide-and-conquer algorithms split a problem into separate 
subproblems, solve the subproblems, and combine the results for 
a solution to the original problem
■ Example: Quicksort
■ Example: Mergesort
■ Example: Binary search

■ Divide-and-conquer algorithms can be thought of as top-down 
algorithms

■ In contrast, a dynamic programming algorithm proceeds by 
solving small problems, remembering the results, then combining 
them to find the solution to larger problems

■ Dynamic programming can be thought of as bottom-up



Comparison with divide-and-conquer

■ Like divide-and-conquer, solve problem by combining the 
solutions to sub-problems.

■ Differences between divide-and-conquer and DP:
■ Independent sub-problems, solve sub-problems independently 

and recursively, (so same sub(sub)problems solved repeatedly)
■ Sub-problems are dependent, i.e., sub-problems share 

sub-sub-problems, every sub(sub)problem solved just once, 
solutions to sub(sub)problems are stored in a table and used for 
solving higher level sub-problems.

■ DP reduces computation by 
■ Solving subproblems in a bottom-up fashion.
■ Storing solution to a subproblem the first time it is solved.
■ Looking up the solution when subproblem is encountered again.
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Example 2: Binomial Coefficients
■ (x + y)2 = x2 + 2xy + y2, coefficients are 1,2,1
■ (x + y)3 = x3 + 3x2y + 3xy2 + y3, coefficients are 1,3,3,1
■ (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4,

coefficients are 1,4,6,4,1
■ (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5,

coefficients are 1,5,10,10,5,1
■ The n+1 coefficients can be computed for (x + y)n according to 

the formula c(n, i) = n! / (i! * (n – i)!)
for each of  i = 0..n

■ The repeated computation of all the factorials gets to be expensive
■ We can use dynamic programming to save the factorials as we go
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Solution by dynamic programming
n  c(n,0)   c(n,1)   c(n,2)   c(n,3)   c(n,4)   c(n,5)   c(n,6)
0       1
1       1          1
2       1          2         1
3       1          3         3           1
4       1          4         6           4         1
5       1          5        10         10        5          1
6       1          6        15         20       15         6          1
Each row depends only on the preceding row
Only linear space and quadratic time are needed
This algorithm is known as Pascal’s Triangle
c(n,k) → (1+x)n   .. c xk 
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Solution by dynamic programming
n  c(n,0)   c(n,1)   c(n,2)   c(n,3)   c(n,4)   c(n,5)   c(n,6)
0       1
1       1          1
2       1          2         1
3       1          3         3           1
4       1          4         6           4         1
Each row depends only on the preceding row
Only linear space and quadratic time are needed
This algorithm is known as Pascal’s Triangle
c(n,k) → (1+x)n   .. c xk 
c(n,k)  = c(n-1,k-1)+c(n-1,k)
c(n,0) = c(n,1) = 1



Solution by dynamic programming
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Recursive Solution
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Dynamic Programming 

Construct a temporary array C[][] in a bottom-up manner
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The algorithm in Java
public static int binom(int n, int m) {
    int[ ] b = new int[n + 1];
    b[0] = 1;
    for (int i = 1; i <= n; i++) {
        b[i] = 1;
        for (int j = i – 1; j > 0; j--) {
            b[j] += b[j – 1];
        }
    }
    return b[m];
}
■ Source: Data Structures and Algorithms with Object-Oriented Design Patterns 

in Java   by   Bruno R. Preiss
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The principle of optimality, I
■ Dynamic programming is a technique for finding an 

optimal solution
■ The principle of optimality applies if the optimal 

solution to a problem always contains optimal solutions 
to all subproblems

■ Example: Consider the problem of making N¢ with the 
fewest number of coins
■ Either there is an N¢ coin, or
■ The set of coins making up an optimal solution for N¢ can be 

divided into two nonempty subsets, n1¢ and n2¢
■ If either subset, n1¢ or n2¢, can be made with fewer coins, then clearly 

N¢ can be made with fewer coins, hence solution was not optimal
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The principle of optimality, II
■ The principle of optimality holds if

■ Every optimal solution to a problem contains...
■ ...optimal solutions to all subproblems

■ The principle of optimality does not say
■ If you have optimal solutions to all subproblems...
■ ...then you can combine them to get an optimal solution

■ Example: In US coinage,
■ The optimal solution to 7¢ is 5¢ + 1¢ + 1¢, and
■ The optimal solution to 6¢ is 5¢ + 1¢, but
■ The optimal solution to 13¢ is not 5¢ + 1¢ + 1¢ + 5¢ + 1¢

■ But there is some way of dividing up 13¢ into subsets with 
optimal solutions (say, 11¢ + 2¢) that will give an optimal 
solution for 13¢
■ Hence, the principle of optimality holds for this problem
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The 0-1 knapsack problem
■ A thief breaks into a house, carrying a knapsack...

■ He can carry up to 25 pounds of loot
■ He has to choose which of N items to steal

■ Each item has some weight and some value
■ “0-1” because each item is stolen (1) or not stolen (0)

■ He has to select the items to steal in order to maximize the value of his 
loot, but cannot exceed 25 pounds

■ A greedy algorithm does not find an optimal solution
■ A dynamic programming algorithm works well
■ This is similar to, but not identical to, the coins problem

■ In the coins problem, we had to make an exact amount of change
■ In the 0-1 knapsack problem, we can’t exceed the weight limit, but the 

optimal solution may be less than the weight limit
■ The dynamic programming solution is similar to that of the coins problem
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Comments
■ Dynamic programming relies on working “from the bottom up” 

and saving the results of solving simpler problems
■ These solutions to simpler problems are then used to compute the solution 

to more complex problems
■ Dynamic programming solutions can often be quite complex and 

tricky
■ Dynamic programming is used for optimization problems, 

especially ones that would otherwise take exponential time
■ Only problems that satisfy the principle of optimality are suitable for 

dynamic programming solutions
■ Since exponential time is unacceptable for all but the smallest 

problems, dynamic programming is sometimes essential
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The End


