
*

Dynamic Programming

adapted from David Luebke

2

Algorithm types

■ Algorithm types we will consider include:
■ Simple recursive algorithms
■ Backtracking algorithms
■ Divide and conquer algorithms
■ Dynamic programming algorithms

■ difference from divide and conquer algorithms
■ Greedy algorithms
■ Branch and bound algorithms
■ Brute force algorithms
■ Randomized algorithms

3

Counting coins
■ To find the minimum number of US coins to make any amount,

the greedy method always works
■ At each step, just choose the largest coin that does not overshoot the

desired amount: 31¢=25
■ The greedy method would not work if we did not have 5¢ coins

■ For 31 cents, the greedy method gives seven coins (25+1+1+1+1+1+1),
but we can do it with four (10+10+10+1)

■ The greedy method also would not work if we had a 21¢ coin
■ For 63 cents, the greedy method gives six coins (25+25+10+1+1+1), but

we can do it with three (21+21+21)
■ How can we find the minimum number of coins for any given

coin set?

4

Coin set for examples

■ For the following examples, we will assume coins in the
following denominations:
 1¢ 5¢ 10¢ 21¢ 25¢

■ We’ll use 22¢ and 63¢ as our goal

■ This example is taken from:
Data Structures & Problem Solving using Java by Mark Allen Weiss

5

A simple solution

■ We always need a 1¢ coin, otherwise no solution exists for
making one cent

■ To make K cents:
■ If there is a K-cent coin, then that one coin is the minimum
■ Otherwise, for each value i < K,

■ Find the minimum number of coins needed to make i cents
■ Find the minimum number of coins needed to make K - i cents

■ Choose the i that minimizes this sum

■ This algorithm can be viewed as divide-and-conquer, or as brute
force
■ This solution is very recursive
■ It requires exponential work

A simple solution

Example: collect 7 cents

6

Simple code for the coin problem
■ public static void main(String[] args) {

 int[] coins = { 1, 5, 10, 21, 25 };
 int solveForThisAmount = 63;
 int[] solution;
 // try simple solution
 solution = makeChange1(coins, solveForThisAmount);
 System.out.println("solution: " +
 Arrays.toString(solution));
 // try dynamic programming solution
 solution = makeChange2(coins, solveForThisAmount);
 System.out.println("solution: " +
 Arrays.toString(solution));
}

7

makeChange1, part 1
■ /**

 * Find the minimum number of coins required.
 * @param coins The available kinds of coins.
 * @param n The desired total.
 * @return An array of how many of each coin.
 */
private static int[] makeChange1(int[] coins, int n) {
 int numberOfDifferentCoins = coins.length;
 int[] solution;
 // if there is a single coin with value n, use it
 for (int i = 0; i < numberOfDifferentCoins; i += 1) {
 if (coins[i] == n) {
 solution = new int[numberOfDifferentCoins];
 solution[i] = 1;
 return solution;
 }
 }
 // else try all combinations of i and n-i coins
 ...
} 8

makeChange1, part 2
 // else try all combinations of i and n-i coins
 solution = new int[numberOfDifferentCoins];
 int leastNumberOfCoins = Integer.MAX_VALUE;
 for (int i = 1; i < n; i += 1) {
 int[] solution1 = makeChange1(coins, i);
 int[] solution2 = makeChange1(coins, n - i);
 int newCoinCount =
 totalCoinCount(solution1, solution2);
 if (newCoinCount < leastNumberOfCoins) {
 leastNumberOfCoins = newCoinCount;
 solution = arraySum(solution1, solution2);
 }
 }
 return solution;
}

9

10

Another solution
■ We can reduce the problem recursively by choosing the

first coin, and solving for the amount that is left
■ For 63¢:

■ One 1¢ coin plus the best solution for 62¢
■ One 5¢ coin plus the best solution for 58¢
■ One 10¢ coin plus the best solution for 53¢
■ One 21¢ coin plus the best solution for 42¢
■ One 25¢ coin plus the best solution for 38¢

■ Choose the best solution from among the 5 given above
■ Instead of solving 62 recursive problems, we solve 5
■ This is still a very expensive algorithm

11

A dynamic programming solution
■ Idea: Solve first for one cent, then two cents, then three cents,

etc., up to the desired amount
■ Save each answer in an array !

■ For each new amount N, compute all the possible pairs of
previous answers which sum to N
■ For example, to find the solution for 13¢,

■ First, solve for all of 1¢, 2¢, 3¢, ..., 12¢
■ Next, choose the best solution among:

■ Solution for 1¢ + solution for 12¢
■ Solution for 2¢ + solution for 11¢
■ Solution for 3¢ + solution for 10¢
■ Solution for 4¢ + solution for 9¢
■ Solution for 5¢ + solution for 8¢
■ Solution for 6¢ + solution for 7¢

12

Example
■ Suppose coins are 1¢, 3¢, and 4¢

■ There’s only one way to make 1¢ (one coin)
■ To make 2¢, try 1¢+1¢ (one coin + one coin = 2 coins)
■ To make 3¢, just use the 3¢ coin (one coin)
■ To make 4¢, just use the 4¢ coin (one coin)
■ To make 5¢, try

■ 1¢ + 4¢ (1 coin + 1 coin = 2 coins)
■ 2¢ + 3¢ (2 coins + 1 coin = 3 coins)
■ The first solution is better, so best solution is 2 coins

■ To make 6¢, try
■ 1¢ + 5¢ (1 coin + 2 coins = 3 coins)
■ 2¢ + 4¢ (2 coins + 1 coin = 3 coins)
■ 3¢ + 3¢ (1 coin + 1 coin = 2 coins) – best solution

■ Etc.

makeChange2

/**
 * Find the minimum number of coins required.
 * @param coins The available kinds of coins.
 * @param desiredTotal The desired total.
 * @return An array of how many of each coin.
 */
public static int[] makeChange2(int[] coins,
 int desiredTotal) {
 int numberOfDifferentCoins = coins.length;
 int[][] solutions = new int[desiredTotal + 1][];
 int[] best = new int[desiredTotal + 1];
 solutions[0] = new int[numberOfDifferentCoins];
 best[0] = 0;
 for (int n = 1; n <= desiredTotal; n++) {
 solveFor2(n, coins, solutions, best);
 }
 return solutions[desiredTotal];
}

13

solveFor2, part 1
/**
 * Finds the minimum number of coins for each value <= n.
 * @param n The largest amount to be solved for.
 * @param coins The available kinds of coins.
 * @param solutions Arrays of how many of each kind of coin.
 * @param best The number of coins in each solution array.
 */
private static void solveFor2(int n, int[] coins,
 int[][] solutions, int[] best) {
 int numberOfDifferentCoins = coins.length;
 // if there is a single coin with the value n, use it
 for (int i = 0; i < numberOfDifferentCoins; i += 1) {
 if (coins[i] == n) {
 solutions[n] =
 new int[numberOfDifferentCoins];
 solutions[n][i] = 1;
 best[i] = 1;
 return;
 }
 }
 // else try all combinations of i and n-i coins
 ...
}

14

solveFor2, part 2
 // else try all combinations of i and n-i coins
 int leastNumberOfCoins = Integer.MAX_VALUE;
 for (int i = 1; i < n; i += 1) {
 int coinCount = best[i] + best[n - i];
 if (coinCount < leastNumberOfCoins) {
 leastNumberOfCoins = coinCount;
 best[n] = coinCount;
 solutions[n] = arraySum(solutions[i],
 solutions[n - i]);
 }
 }
}

15

16

How good is the algorithm?
■ The first algorithm is recursive, with a branching factor

of up to 62
■ Possibly the average branching factor is somewhere around

half of that (31)
■ The algorithm takes exponential time, with a large base

■ The second algorithm is much better—it has a
branching factor of 5
■ This is exponential time, with base 5

■ The dynamic programming algorithm is O(N*K), where
N is the desired amount and K is the number of different
kinds of coins

17

Comparison with divide-and-conquer

■ Divide-and-conquer algorithms split a problem into separate
subproblems, solve the subproblems, and combine the results for
a solution to the original problem
■ Example: Quicksort
■ Example: Mergesort
■ Example: Binary search

■ Divide-and-conquer algorithms can be thought of as top-down
algorithms

■ In contrast, a dynamic programming algorithm proceeds by
solving small problems, remembering the results, then combining
them to find the solution to larger problems

■ Dynamic programming can be thought of as bottom-up

Comparison with divide-and-conquer

■ Like divide-and-conquer, solve problem by combining the
solutions to sub-problems.

■ Differences between divide-and-conquer and DP:
■ Independent sub-problems, solve sub-problems independently

and recursively, (so same sub(sub)problems solved repeatedly)
■ Sub-problems are dependent, i.e., sub-problems share

sub-sub-problems, every sub(sub)problem solved just once,
solutions to sub(sub)problems are stored in a table and used for
solving higher level sub-problems.

■ DP reduces computation by
■ Solving subproblems in a bottom-up fashion.
■ Storing solution to a subproblem the first time it is solved.
■ Looking up the solution when subproblem is encountered again.

18

19

20

21

Example 2: Binomial Coefficients
■ (x + y)2 = x2 + 2xy + y2, coefficients are 1,2,1
■ (x + y)3 = x3 + 3x2y + 3xy2 + y3, coefficients are 1,3,3,1
■ (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4,

coefficients are 1,4,6,4,1
■ (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5,

coefficients are 1,5,10,10,5,1
■ The n+1 coefficients can be computed for (x + y)n according to

the formula c(n, i) = n! / (i! * (n – i)!)
for each of i = 0..n

■ The repeated computation of all the factorials gets to be expensive
■ We can use dynamic programming to save the factorials as we go

22

Solution by dynamic programming
n c(n,0) c(n,1) c(n,2) c(n,3) c(n,4) c(n,5) c(n,6)
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
Each row depends only on the preceding row
Only linear space and quadratic time are needed
This algorithm is known as Pascal’s Triangle
c(n,k) → (1+x)n .. c xk

23

Solution by dynamic programming
n c(n,0) c(n,1) c(n,2) c(n,3) c(n,4) c(n,5) c(n,6)
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
Each row depends only on the preceding row
Only linear space and quadratic time are needed
This algorithm is known as Pascal’s Triangle
c(n,k) → (1+x)n .. c xk
c(n,k) = c(n-1,k-1)+c(n-1,k)
c(n,0) = c(n,1) = 1

Solution by dynamic programming

24

Recursive Solution

25

Dynamic Programming

Construct a temporary array C[][] in a bottom-up manner

26

27

The algorithm in Java
public static int binom(int n, int m) {
 int[] b = new int[n + 1];
 b[0] = 1;
 for (int i = 1; i <= n; i++) {
 b[i] = 1;
 for (int j = i – 1; j > 0; j--) {
 b[j] += b[j – 1];
 }
 }
 return b[m];
}
■ Source: Data Structures and Algorithms with Object-Oriented Design Patterns

in Java by Bruno R. Preiss

28

The principle of optimality, I
■ Dynamic programming is a technique for finding an

optimal solution
■ The principle of optimality applies if the optimal

solution to a problem always contains optimal solutions
to all subproblems

■ Example: Consider the problem of making N¢ with the
fewest number of coins
■ Either there is an N¢ coin, or
■ The set of coins making up an optimal solution for N¢ can be

divided into two nonempty subsets, n1¢ and n2¢
■ If either subset, n1¢ or n2¢, can be made with fewer coins, then clearly

N¢ can be made with fewer coins, hence solution was not optimal

29

The principle of optimality, II
■ The principle of optimality holds if

■ Every optimal solution to a problem contains...
■ ...optimal solutions to all subproblems

■ The principle of optimality does not say
■ If you have optimal solutions to all subproblems...
■ ...then you can combine them to get an optimal solution

■ Example: In US coinage,
■ The optimal solution to 7¢ is 5¢ + 1¢ + 1¢, and
■ The optimal solution to 6¢ is 5¢ + 1¢, but
■ The optimal solution to 13¢ is not 5¢ + 1¢ + 1¢ + 5¢ + 1¢

■ But there is some way of dividing up 13¢ into subsets with
optimal solutions (say, 11¢ + 2¢) that will give an optimal
solution for 13¢
■ Hence, the principle of optimality holds for this problem

30

The 0-1 knapsack problem
■ A thief breaks into a house, carrying a knapsack...

■ He can carry up to 25 pounds of loot
■ He has to choose which of N items to steal

■ Each item has some weight and some value
■ “0-1” because each item is stolen (1) or not stolen (0)

■ He has to select the items to steal in order to maximize the value of his
loot, but cannot exceed 25 pounds

■ A greedy algorithm does not find an optimal solution
■ A dynamic programming algorithm works well
■ This is similar to, but not identical to, the coins problem

■ In the coins problem, we had to make an exact amount of change
■ In the 0-1 knapsack problem, we can’t exceed the weight limit, but the

optimal solution may be less than the weight limit
■ The dynamic programming solution is similar to that of the coins problem

31

Comments
■ Dynamic programming relies on working “from the bottom up”

and saving the results of solving simpler problems
■ These solutions to simpler problems are then used to compute the solution

to more complex problems
■ Dynamic programming solutions can often be quite complex and

tricky
■ Dynamic programming is used for optimization problems,

especially ones that would otherwise take exponential time
■ Only problems that satisfy the principle of optimality are suitable for

dynamic programming solutions
■ Since exponential time is unacceptable for all but the smallest

problems, dynamic programming is sometimes essential

32

The End

