| Dynamic Programming

adapted from David Luebke

Algorithm types

= Algorithm types we will consider include:
= Simple recursive algorithms
= Backtracking algorithms
= Divide and conquer algorithms

m)- Dynamic programming algorithms

. difference from divide and conquer algorithms
= Greedy algorithms
« Branch and bound algorithms
= Brute force algorithms
= Randomized algorithms

Countinge coins

To find the minimum number of US coins to make any amount,
the greedy method always works

= At each step, just choose the largest coin that does not overshoot the
desired amount: 31¢=25

The greedy method would not work 1f we did not have 5¢ coins
« For 31 cents, the greedy method gives seven coins (25+1+1+1+1+1+1),
but we can do it with four (10+10+10+1)
The greedy method also would not work 1f we had a 21¢ coin
« For 63 cents, the greedy method gives six coins (25+25+10+1+1+1), but
we can do it with three (21+21+21)
How can we find the minimum number of coins for any given
coin set?

| Coin set for examples

= For the following examples, we will assume coins 1n the
following denominations:

1¢ 5¢ 10¢ 21¢ 25¢
= We’'ll use 22¢ and 63¢ as our goal

= This example is taken from:
Data Structures & Problem Solving using Java by Mark Allen Weiss

A simple solution

We always need a 1¢ coin, otherwise no solution exists for
making one cent
To make K cents:
= If there is a K-cent coin, then that one coin is the minimum
= Otherwise, for each value i < K,
- Find the minimum number of coins heeded to make i cents
= Find the minimum number of coins needed to make K - i cents
= Choose the i that minimizes this sum

This algorithm can be viewed as divide-and-conquer, or as brute
force

« This solution 1s very recursive
« It requires exponential work

| A simple solution

Example: collect 7 cents

Simple code for the coin problem

« public static void main(String[] args) {
int[] coins = { 1, 5, 10, 21, 25 };
int solveForThisAmount = 63;
int[] solution;
// try simple solution
solution = makeChangel(coins, solveForThisAmount);
System.out.println("solution: " +
Arrays.toString(solution));
// try dynamic programming solution
solution = makeChange2(coins, solveForThisAmount);

System.out.println("solution: +
Arrays.toString(solution));

makeChangel. part 1

- /**
* Find the minimum number of coins required.
* @param coins The available kinds of coins.
* @param n The desired total.
* @return An array of how many of each coin.
*/
private static int[] makeChangel(int[] coins, int n) {
int numberOfDifferentCoins = coins.length;
int[] solution;
// 1if there is a single coin with value n, use it
for (int 1 = @; i < numberOfDifferentCoins; i += 1) {
if (coins[i] == n) {
solution = new int[numberOfDifferentCoins];
solution[i] = 1;
return solution;
}
}

// else try all combinations of i and n-i coins

makeChangel, part 2

// else try all combinations of 1 and n-i coins
solution = new int[numberOfDifferentCoins];
int leastNumberOfCoins = Integer.MAX VALUE;
for (int 1 =1; i < n; i +=1) {
int[] solutionl = makeChangel(coins, 1i);
int[] solution2 = makeChangel(coins, n - 1i);
int newCoinCount =
totalCoinCount(solutionl, solution2);
if (newCoinCount < leastNumberOfCoins) {
leastNumberOfCoins = newCoinCount;
solution = arraySum(solutionl, solution2);

}
}

return solution;

| Another solution

We can reduce the problem recursively by choosing the
first coin, and solving for the amount that is left

For 63¢:

= One 1¢ coin plus the best solution for 62¢
= One 5¢ coin plus the best solution for 58¢
= One 10¢ coin plus the best solution for 53¢
= One 21¢ coin plus the best solution for 42¢
= One 25¢ coin plus the best solution for 38¢

Choose the best solution from among the 5 given above
Instead of solving 62 recursive problems, we solve 5
This 1s still a very expensive algorithm

10

A dynamic programming solution

Idea: Solve first for one cent, then two cents, then three cents,

etc., up to the desired amount

= Save each answer in an array !

For each new amount N, compute all the possible pairs of

previous answers which sum to N

= For example, to find the solution for 13¢,

= First, solve for all of 1¢, 2¢, 3¢, ..., 12¢
= Next, choose the best solution among:

Solution for 1¢
Solution for 2¢
Solution for 3¢
Solution for 4¢
Solution for 5¢
Solution for 6¢

+

+ + + + +

solution for 12¢
solution for 11¢
solution for 10¢
solution for 9¢
solution for 8¢
solution for 7¢

11

Example

Suppose coins are 1¢, 3¢, and 4¢

There’s only one way to make 1¢ (one coin)

To make 2¢, try 1¢+1¢ (one coin + one coin = 2 coins)
To make 3¢, just use the 3¢ coin (one coin)

To make 4¢, just use the 4¢ coin (one coin)

To make 5¢, try

= 1¢+4¢ (1 coin+ 1 coin =2 coins)

= 2¢ + 3¢ (2 coins + 1 coin = 3 coins)

= The first solution 1s better, so best solution is 2 coins
To make 6¢, try

= 1¢ +5¢ (1 coin + 2 coins = 3 coins)

= 2¢ +4¢ (2 coins + 1 coin = 3 coins)

= 3¢+ 3¢ (1 coin + 1 coin =2 coins) — best solution

Etc.

12

makeChange?2

/**
* Find the minimum number of coins required.
* @param coins The available kinds of coins.
* @param desiredTotal The desired total.
* @return An array of how many of each coin.
*/
public static int[] makeChange2(int[] coins,
int desiredTotal) {
int numberOfDifferentCoins = coins.length;
int[][] solutions = new int[desiredTotal + 1][];
int[] best = new int[desiredTotal + 1];
solutions[@] = new int[numberOfDifferentCoins];
best[o] = 06;
for (int n = 1; n <= desiredTotal; n++) {
solveFor2(n, coins, solutions, best);

}

return solutions[desiredTotal];

/**
X
*
*
X
X

*/

pri

solveFor2. part 1

Finds the minimum number of coins for each value <= n.
@param n The largest amount to be solved for.

@param coins The available kinds of coins.

@param solutions Arrays of how many of each kind of coin.
@param best The number of coins in each solution array.

vate static void solveFor2(int n, int[] coins,
int[][] solutions, int[] best) {
int numberOfDifferentCoins = coins.length;
// if there is a single coin with the value n, use it
for (int i = @; i < numberOfDifferentCoins; i += 1) {
if (coins[i] == n) {
solutions[n] =
new int[numberOfDifferentCoins];
solutions[n][1i] = 1;
best[i] = 1;
return;
}
}

// else try all combinations of i and n-i coins

14

solveFor2. part 2

// else try all combinations of i1 and n-1i coins
int leastNumberOfCoins = Integer.MAX VALUE;
for (int 1 =1; i < n; i +=1) {
int coinCount = best[i] + best[n - i];
if (coinCount < leastNumberOfCoins) {
leastNumberOfCoins = coinCount;
best[n] = coinCount;
solutions[n] = arraySum(solutions[i],
solutions[n - i]);

15

| How good i1s the algorithm?

= The first algorithm 1s recursive, with a branching factor
of up to 62

= Possibly the average branching factor 1s somewhere around
half of that (31)

= The algorithm takes exponential time, with a large base
= The second algorithm 1s much better—it has a
branching factor of 5
= This 1s exponential time, with base 5
= The dynamic programming algorithm is O(N*K), where
N 1s the desired amount and K 1s the number of different
kinds of coins

16

Comparison with divide-and-conquer

Divide-and-conquer algorithms split a problem into separate
subproblems, solve the subproblems, and combine the results for
a solution to the original problem

« Example: Quicksort

= Example: Mergesort

= Example: Binary search

Divide-and-conquer algorithms can be thought of as top-down
algorithms

In contrast, a dynamic programming algorithm proceeds by
solving small problems, remembering the results, then combining
them to find the solution to larger problems

Dynamic programming can be thought of as bottom-up

17

Comparison with divide-and-conquer

. Like divide-and-conquer, solve problem by combining the
solutions to sub-problems.

. Differences between divide-and-conquer and DP:

. Independent sub-problems, solve sub-problems independently
and recursively, (so same sub(sub)problems solved repeatedly)
Sub-problems are dependent, 1.€., sub-problems share
sub-sub-problems, every sub(sub)problem solved just once,
solutions to sub(sub)problems are stored in a table and used for
solving higher level sub-problems.

. DP reduces computation by

Solving subproblems in a bottom-up fashion.
Storing solution to a subproblem the first time it 1s solved.
. Looking up the solution when subproblem 1s encountered again.

18

Fibonacci sequence (1/4)

Fibonacci sequence: 1,1,2.,3,5,8.,13.,21,...
F=1 if i==1 ori== (assume F,=0)

f

Solved by a recursive program:

&)
o
® @
Much replicated computation 1s done.
[t should be solved by a simple loop.

19

Fibonacci Sequence (2/4)

Recursive logic:
- F,=F,=1
— Ifi>2then F=F_, +F,,
Directly translates into a
recursive algorithm F:
F(i) {
if(i=1)or(i=2)
xe1
else
x « F(i-1) + F(i-2)

return x

1
il

F’s call tree is exponential;
F is recomputed many times
for the same input value!

4+ We can speed things up by
storing output values of F
in an array A.
F(i) {
if (A; !'= NULL) return
A
if (i=1)or(i=2)
X1
else
x « F(i-1) + F(i-2)
A <X
return x
}
¢ Since there are n cells in
A: and each cell takes O(1)

time to compute, this is
O(n)!

20

| Example 2: Binomial Coefticients

(X +Vy)? = x* + 2xy + y?, coefficients are 1,2,1

(x +y)? = x3 + 3x%y + 3xy? + y3, coefficients are 1,3,3,1
(X + y)* = x* + 4y + 6x2y? + 4xy3 + y?

coefficients are 1,4,6.4,1

(X +y)? = x> + 5x%y + 10x3y? + 10x%y3 + 5xy* + y°,
coefficients are 1,5,10,10,5,1

The n+1 coefficients can be computed for (X + y)" according to
the formula c(n, i) = n! / (il * (n - 1)!)

for each of 1 =0..n

The repeated computation of all the factorials gets to be expensive

We can use dynamic programming to save the factorials as we go

21

| Solution by dynamic programming

n c(n,0) c(n,1) c(n,2) c(n,3) c(n,4) c(n,5 c(n,6)
0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

Each row depends only on the preceding row
Only linear space and quadratic time are needed
This algorithm 1s known as Pascal’s Triangle

c(nk) — (1+x)* ..cxX

22

| Solution by dynamic programming

n c(n,0) c(n,1) c(n,2) c(n,3) c(n,4) c(n,5 c(n,6)
0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

Each row depends only on the preceding row
Only linear space and quadratic time are needed
This algorithm 1s known as Pascal’s Triangle
c(nk) — (1+x)" ..cx¥

c(n,k) =c(n-1,k-1)+c(n-1,k)

c(n,0) =c(n,1)=1

23

| Solution by dynamic programming

Optimal Substructure

Let’'s work it out for n=4 and k=2. C(4, 2) = Sum of

e C(3,1)=Sum of
Answer: 6 C(2,0) =1

2, 1)=Sum of

(
m C(1,0)=1
s OCfl.1)=1

We know: C(3, Sum of

£ =

C(2, 1) = Sum of
m C(1,1)=1
m C(1,0)=1
C(2,2)=1

Recursive Solution

// Returns value of Binomial Coefficient C(n, k)

int bﬁgomial(oeff(int n, int k)
// Base Cases
if (k==0 ll k==n)
return 1;

// Recur
}

return binomialCoeff(n-1, k-

C(5,
/
C(4, 1)
/I N B
E(3, @) £€(3; 1)
/ \
C(2, 0) C(2, 1)

\

/
(1, o) C(1, 1)

1) + binomialCoeff(n-1, k);

2)
\
C(4, 2)
/ \
€(3. 1) C(3, 2)
/ \ / \
C(2, 0) C(2, 1) C(2, 1) C(2, 2)
(e / \
(1, @) C(1, 1) C(1, @) C(1, 1)

25

Dynamic Programming

Construct a temporary array C[][] in a bottom-up manner

// Returns value of Binomial Coefficient C(n, k)
int binomialCoeff(int n, int k)

{ int C[n+1][k+1];

int i, j;

// Caculate value of Binomial Coefficient in bottom up manner
for (1 =0; 1 <= n; i++)

Ior (] =0; jJ <=min(i, Kk); j++)
// Base (Cases
if (j ==0 || j==1)
Clil[j] = 1;

// Calculate value using previosly stored values
else

Cli][j] = C[i-1][j-1] + C[i-W§[j];
}
return C[n][k];

| The algorithm 1n Java

public static int binom(int n, int m) {
int[] b = new int[n + 1];
b[0] = 1;
for (inti=1;1<=n;i++) {
b[i] = 1;
for intj=1-1;j>0;3--){
b[j] +=b[j - 1];
}
}
return b[m];

}

= Source: Data Structures and Algorithms with Object-Oriented Design Patterns
in Java by Bruno R. Preiss

27

| The principle of optimality, I

= Dynamic programming is a technique for finding an
optimal solution

= The principle of optimality applies 1f the optimal
solution to a problem always contains optimal solutions
to all subproblems

= Example: Consider the problem of making N¢ with the
fewest number of coins
= FEither there is an N¢ coin, or

= The set of coins making up an optimal solution for N¢ can be
divided into two nonempty subsets, n. ¢ and n, ¢

= If either subset, n,¢ orn,¢, can be made with fewer coins, then clearly

N¢ can be made with fewer coins, hence solution was not optimal

28

The principle of optimality, II

The principle of optimality holds 1f
= Every optimal solution to a problem contains...
= ...optimal solutions to all subproblems

The principle of optimality does nof say
= If you have optimal solutions to all subproblems...
= ...then you can combine them to get an optimal solution

Example: In US coinage,

« The optimal solution to 7¢ 1s 5¢ + 1¢ + 1¢, and

« The optimal solution to 6¢ 1s 5¢ + 1¢, but

« The optimal solution to 13¢ is not 5¢ + 1¢ + 1¢ + 5¢ + 1¢
But there 1s some way of dividing up 13¢ into subsets with
optimal solutions (say, 11¢ + 2¢) that will give an optimal
solution for 13¢

= Hence, the principle of optimality holds for this problem

29

The 0-1 knapsack problem

A thief breaks into a house, carrying a knapsack...

He can carry up to 25 pounds of loot
He has to choose which of N items to steal
= Each item has some weight and some value

= “0-1” because each item is stolen (1) or not stolen (0)

He has to select the items to steal in order to maximize the value of his
loot, but cannot exceed 25 pounds

A greedy algorithm does not find an optimal solution

A dynamic programming algorithm works well

This 1s similar to, but not identical to, the coins problem

In the coins problem, we had to make an exact amount of change

In the 0-1 knapsack problem, we can’t exceed the weight limit, but the
optimal solution may be /ess than the weight limit

The dynamic programming solution is similar to that of the coins problem

Comments

Dynamic programming relies on working “from the bottom up”
and saving the results of solving simpler problems

= These solutions to simpler problems are then used to compute the solution
to more complex problems

Dynamic programming solutions can often be quite complex and
tricky
Dynamic programming 1s used for optimization problems,

especially ones that would otherwise take exponential time

= Only problems that satisfy the principle of optimality are suitable for
dynamic programming solutions

Since exponential time 1s unacceptable for all but the smallest
problems, dynamic programming 1s sometimes essential

31

| The End

32

