Inference by Enumeration

" Obvious problems:
" Worst-case time complexity O(d")

" Space complexity O(d") to store the joint distribution



Independence

A and B are independent iff
P(A|B)=P(A) or P(B|A)=P(B) or P(A,B)=P(A)P(B)

Cavity
decomposesinto \Toothache Catch

Toothache Catch ‘
Weather

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity)P(Weather)

Cavity

32 entries reduced to 12; for n independent biased coins, 2" — n
Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?

Chapter 13 23




Conditional independence

P(Toothache, Cavity, Catch) has 2° — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn’t depend
on whether | have a toothache:

(1) P(catchl|toothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
(2) P(catchl|toothache, —cavity) = P(catch|—cavity)

C'atch is conditionally independent of T'oothache given Cauvity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence contd.

Werite out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)

= P(Toothache|Catch, Cavity)P(Catch, Cavity)

= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

le., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust
form of knowledge about uncertain environments.
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Bayes’ Rule

Product rule P(a N b) = P(alb)P(b) = P(bla)P(a)

P(bla)P
= Bayes' rule P(a|b) = ( l‘g()b) ()
or in distribution form
P(X|Y)P(Y)

P(Y|X) =

px]  ~ CPXYIP(Y)

Useful for assessing diagnostic probability from causal probability:

P(Ef fect|Cause)P(Cause)
P(Ef fect)

E.g., let M be meningitis, S be stiff neck:

P(s|m)P(m) 0.8 x 0.0001
P(s) B 0.1

P(Cause|E f fect) =

P(m|s) = = 0.0008

Note: posterior probability of meningitis still very small!
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Quiz: Bayes’ Rule

" Given: DD
) P(W) D W P
R P wet sun 0.1
un 0.8 dry sun 0.9
rain 0.2 wet rain 0.7
dry rain | 0.3

" Whatis P(W | dry) ?



Bayes’ Rule and conditional independence

P(Cavity|toothache A catch)
= a P(toothache A catch|Cavity)P(Cavity)
= a P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Ef fecty, ..., Effect,) = P(Cause)l,P(Ef fect;|Cause)

j t A A B N

Total number of parameters is linear in n
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Today — Part 2: Probabllistic Reasoning

» Bayesian networks

» Systematic way to represent the independence and conditional
Independence relationships.



Outline

& Syntax
{> Semantics

{> Parameterized distributions

Chapter 14.1-3
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Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ~ “directly influences”)
a conditional distribution for each node given its parents:

P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over X, for each combination of parent values
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Example

Topology of network encodes conditional independence assertions:

Toothache @

Weather is independent of the other variables

T'oothache and Catch are conditionally independent given C'avity
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Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:
— A burglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call -- Mary likes loud music so sometimes misses

— The alarm can cause John to call -- always calls, but sometimes confuses
with telephone ringing,
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Example contd.

P(AIB,E)
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T |

95
94
29
.001

T —

Burglary

P(B)
001

P(E)

Earthquake 002

P(JIA)

>

90
05

P(MIA)

70
01
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Compactness

A CPT for Boolean X; with & Boolean parents has

rows for the combinations of parent values /CE)

Each row requires one number p for X, =true m
(the number for X; = false is just 1 — p) @ @

If each variable has no more than £ parents,
the complete network requires O( ') numbers

|.e., grows linearly with  vs. O(2") for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2= 10 numbers (vs. 2° — 1 = 31)
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Compactness

A CPT for Boolean X; with & Boolean parents has

2% rows for the combinations of parent values /CE)

Each row requires one number p for X, =true m
(the number for X; = false is just 1 — p) @ @

If each variable has no more than £ parents,
the complete network requires O(n - 2%) numbers

|.e., grows linearly with n, vs. O(2") for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2= 10 numbers (vs. 2° — 1 = 31)
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Global semantics

Global semantics defines the full joint distribution

as the product of the local conditional distributions: @

P(zy,...,z,) = II_, P(x;|parents(X;)) m
e.g., P(gAmANaAN—-bA —e) @ @

- recall chain rule and conditional independence.

Chapter 14.1-3 8



Global semantics

“Global” semantics defines the full joint distribution

as the product of the local conditional distributions: /(D

P(zy,...,z,) = II_, P(x;|parents(X;)) m
e.g., P(gAmANaAN—-bA —e) @ @

= P(jla)P(ml|a)P(a|=b, =e) P(=b) P(—e)
0.9 % 0.7 % 0.001 x 0.999 x 0.998
0.00063

2
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Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X, ..., X,
2. Fori =1ton

add X; to the network

select parents from X, ..., X,_1 such that

P(X?_j|PG,-’T’€’TU€S(X?;)) — P(X,|X1 “aay X?_j_l)
This choice of parents guarantees the global semantics:

P(X,,....X,) = II[_P(X;|Xy,.... X; 1) (chain rule)
= [I'_ ,P(X,|Parents(X;)) (by construction)
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)?
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No
P(A|J, M) = P(A|J)? P(A|J, M) = P(A)?
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Example

Suppose we choose the ordering M, J, A, B, E

N

Burglary

J|M) = P(J)? No
AlJ, M) = P(A|J)? P(A]J, M) = P(A)? No
B|A, J, M) = P(B|A)?

P
P
P
P(B|A, J,M) = P(B)?

.

Chapter 14.1-3 15



Example

Suppose we choose the ordering M, J, A, B, E

J|M) = P(J)? No

AlJ, M) = P(A[J)? P(A|J, M) = P(A)? No
B|A,J, M) = P(B|A)? Yes

B|A, J, M) = P(B)? No

E|B, A, J, M) = P(E|A)?

E|B,A,J M) = P(E|A, B)?
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Example

Suppose we choose the ordering M, J, A, B, E

J|M) = P(J)? No

AlJ, M) = P(A[J)? P(A|J, M) = P(A)? No
B|A,J, M) = P(B|A)? Yes

B|A, J, M) = P(B)? No
)
)

|B, A, J,M) = P(E|A)? No
|B, A, J,M) = P(E|A,B)? Yes
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Example contd.

Burglary
Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)
Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1+ 2+ 4 + 2+ 4 =13 numbers needed
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