TEMPORAL PROBABILITY MODELS
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Reasoning over Time or Space

" Often, we want to reason about a sequence of observations
" Speech recognition
" Robot localization

" User attention

" Medical monitoring

" Need to introduce time (or space) into our models



Markov Models

* Future states depend only on the current state not on the events that occurred before it

* Value of X at a given time is called the state

" Parameters: called transition probabilities or dynamics, specify how the state evolves
over time (also, initial state probabilities)
" Stationarity assumption: transition probabilities the same at all times



Joint Distribution of a Markov Model

P(X1)  P(XyXi-1)

" Joint distribution:
P(X1, X5, X3,X4) = P(X1)P(X3|X1)P(X3|X2)P(X4| X3)
" More generally:
P(X1,Xs,..., Xr)=P(X1)P(X2|X1)P(X3|X2)... P(Xp|X7_1)
T

= P(Xy) | | P(X4]X:-1)



Chain Rule and Markov Models

" From the chain rule, every joint distribution over X1, X2, X3, X4can be written as:
P(X1, X2, X3, X4) = P(X1)P(X2]| X1)P(X3]| X1, X2) P(X4| X1, Xo, X3)

" Assuming that

X3 Al X4 ‘ X9 and X4J_|_X1,X2 ‘ X3

results in the expression posited on the previous slide:

P(X1, X2, X3, X4) = P(X1)P(X2| X1)P(X3] X2) P(X4| X3)



Chain Rule and Markov Models

" From the chain rule, every joint distribution over Xl, XQ, Ceey XT can be written as:

T
P(X1,Xa,....X7) = P(X1) | [ P(X¢| X1, Xa, .., Xio1)

t=2
" Assuming that for all t:

Xt AL Xl)"'7Xt—2 ‘ Xt—l

gives us the expression posited on the earlier slide:

T
P(X1, Xs,..., Xr) = P(X1) | | P(X:|X:-1)
t=2



Example Markov Chain: Weather

" States: X = {rain, sun}

" Initial distribution: 1.0 sun

" CPT P(Xt | Xt—l): Two new ways of representing the same CPT
0.3 0.9
0.9
sun sun
(%
0
rain A rain
0.1 0.7

0.7



Quiz: Example Markov Chain: Weather

"Initial distribution: 1.0 sun

"What is the probability distribution after one step?
"P(X,=sun) =7



Example Markov Chain: Weather

"Initial distribution: 1.0 sun

"What is the probability distribution after one step?

P(X, =sun) = +
P(X, = sun| Xy =rain)P(X; = rain)

+0.3-0.0=0.9



Mini-Forward Algorithm

" Question: What’s P(X) on some day t?

P(x1) = known

P(:Ct) = Z P(xs_1,x¢)

Tt—1




Example Run of Mini-Forward Algorithm

" From initial observation of sun

< 0.0 > < 01 > < 016 > < 0.196 >~< o;; >

P(X)) P(X)) P(X;) P(X),) P(X.)
" From initial observation of rain

< 1.o> <0.7> <0.52> <0.412 >~< 0.25>

P(X,) P(X,) P(X;) P(X,) PX.)
" From yet another initial distribution P(X,):

(.7, . = (70 )

P(X}) P(X.)



Stationary Distributions

" For most chains: " Stationary distribution:
" Influence of the initial distribution gets " The distribution we end up with is called
less and less over time. the stationary distribution of the chain
" The distribution we end up in is " It satisfies P,

independent of the initial distribution

Po(X) = Pot1(X) = ZP(X‘%)POO(ZIZ)

006




Quiz: Stationary Distributions

" Question: What’s P(X) at time t = infinity? @

« & ® ‘t%”’
\ o, DD% m i(\\
P (sun) = P(sun|sun)Ps (sun) + P(sun|rain) Py (rain) j

Py (rain) = P(rain|sun) Py (sun) + P(rain|rain) Py (rain)




Quiz: Stationary Distributions

" Question: What’s P(X) at time t = infinity?

@ @ @ @ .............. > !
) = P(sun|sun) Py (sun) + P(sun|rain)Ps (rain) Q
(ram) = P(rain|sun) Py (sun) + P(ram|ram (rain)

)
o (sun) + 0.3Ps (rain)
)

P (o) =07 X x
(ram) =0.1 (sun + 0.7P (rain) _
('ram) = 1/3P (sun)

rain rin 07

Py (sun) = 3/4
Also: P (sun) + P (rain) = 1 :> Py (rain) =1/4



Probability Recap

. . P(x,y)
Conditional probabilit P(x|y) =
P y | P
Product rule P(x,y) = P(x|y)P(y)
Chain rule P(X1,X2,...Xn) = P(X1)P(X3|X1)P(X3|X1,X2)...

mn
= |] P(Xi|X1,..., Xi—1)

1=1

X, Y independent if and only if: Vz,y : P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:
Vz,y,z 1 P(z,y|z) = P(z|z)P(y|z)

X1UY|Z



Hidden Markov Models




Hidden Markov Models

= Markov chains not so useful for most agents
= Need observations to update your beliefs

= Hidden Markov models (HMMs) O
= Underlying Markov chain over states X 0
= You observe outputs (effects) at each time step "D

(o)) -~




Example: Weather HMM

P(X: | Xi-1)

Rain, ,

\ \4
Umbrella, , Umbrella,

Rain,

P(E; | Xy)

= An HMM is defined by:

= |nitial distribution:
" Transitions:
=" Emissions:

P(X1)
P(X; | Xi—1)
P(E; | Xi)

Rain,,,

A4

Umbrella,,,

|

Ri | Rus | P(RualRY) Re | U | P(UJRY
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +U 0.2
-r -r 0.7 -r -u 0.8




Joint Distribution of an HMM

Y

P(X1, Er, X2, Eo, X3, E3) = P(X1)P(E1| X1)P(X2| X1)P(E2| X2) P(X3| X2) P(Es| X3)

= More generally: -

P<X17 E17 SR 7XT7 ET) — P<X1)P<E1‘X1) H P(Xt‘Xt—l)P(Et‘Xt>
t=2
= Questions to be resolved:
® Does this indeed define a joint distribution?
= Can every joint distribution be factored this way, or are we making some assumptions about the
joint distribution by using this factorization?



Chain Rule and HMMs

= From the chain rule, every joint distribution over X, F1, X5, F5, X3, F’3 can be written as:

P(X17E17X27E27X37E3> :P(X1>P(E1‘X1)P(X2‘X17El)P(EQ‘XlaElaXQ)
P(Xs3| X1, E1, Xo, E2)P(Es| X1, B, Xo, Ea, X3)

= Assuming that

Xo LBy | Xy, Eoll Xq,F | Xey, X3l Xy,E1,Ey | Xo, Esl Xy,F, X0, Es| X3

gives us the expression posited on the previous slide:

P(X1, E1, Xo, B, X5, E3) = P(X1)P(E1|X1)P(X2|X1)P(Es|X2)P(X35|Xs) P(Es| X3)



Chain Rule and HMMs

" From the chain rule, every joint distribution over X, E;,..., X, Ep can be written as:

T
P(Xy,Ey,..., X, Br) = P(X1)P(E\| X)) | | P(X4| X1, Bv, ..., Xieo1, By ) P(Ey| Xy, By, Xy B, X)

t=2

= Assuming that for all t:
= State independent of all past states and all past evidence given the previous state, i.e.:

Xy L X4, By, 0 X0, By 9, By 1 | Xiq
= Evidence is independent of all past states and all past evidence given the current state, i.e.:
By L X1,Ey,..., X0, B9, Xy 1, B 1 | Xy

gives us the expression posited on the earlier slide:

T
P(Xy,Ey,...,X7,E7) = P(Xl)P(El\Xl)HP(Xt|Xt—1)P(Et\Xt)
P



Real HMM Examples

= Speech recognition HMMs:
= QObservations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

= Machine translation HMMs:
= QObservations are words (tens of thousands)
= States are translation options

= Robot tracking:
= QObservations are range readings (continuous)
= States are positions on a map (continuous)



Inference In Temporal Models

» Filtering: This is the task of computing the belief state—the
posterior distribution over the most recent state—given all
evidence to date. P(X | e ).

» Umbrella example?

» Prediction: This is the task of computing the posterior distribution
over the future state, given all evidence to date. P(X,, | e ) for
some k>0. Example?

» Smoothing: This is the task of computing the posterior distribution

over a past state, given all evidence up to the present. That is, we
wish to compute P(X | e ) forO<k<t.

» Most likely explanation: Given a sequence of observations, we
might wish to find the sequence of states that is most likely to
have generated those observations. argmax .. P(x, .| e, ).



Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the distribution
B.(X) = P.(X; | e,, ..., &) (the belief state) over time

We start with B,(X) in an initial setting, usually uniform
As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program



Example: Robot Localization

Example from
Michael Pfeiffer

| TS
Prob 0 1

t=0

Sensor model: can read in which directions there is a wall,
never more than 1 mistake

Motion model: may not execute action with small prob.




Example: Robot Localization

| TS
Prob 0 1

t=1
Lighter grey: was possible to get the reading, but less likely b/c
required 1 mistake




Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents,;, etc.

E,; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten,

This assumes discrete time; step size depends on problem

Notation: X, = X, X 11,..., X1, X,

Chapter 15, Sections 1-5



Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: X; depends on bounded subset of X.;_;

First-order Markov process: P (X;| X, 1) = P(X;|X;_ 1)
Second-order Markov process: P(X;| X, 1) = P(Xy|X; 9, X} 1)

o — D~ ED—~CO—~ED—E
—_— B N

Sensor Markov assumption: P(E;| X, Eg; 1) = P(E;|X;)

Stationary process: transition model P(X;|X; ;) and
sensor model P(E;|X;) fixed for all ¢

Chapter 15, Sections 1-5 4



Example

Ri_1| P(Ry)

t 0.7
f 0.3

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Temp;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,

Chapter 15, Sections 1-5 5



Inference tasks

Filtering: P(X;|e1+)
belief state—input to the decision process of a rational agent

Prediction: P(X;.;|eq.) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xj|ei) for 0 < k <t
better estimate of past states, essential for learning

Most likely explanation: arg maxx,, P(x1.¢|€1.)
speech recognition, decoding with a noisy channel

Chapter 15, Sections 1-5 6



Filtering

Aim: devise a recursive state estimation algorithm:

P<Xt+1\91:t+1) — f(et+17 P<Xt\91:t>)

P<Xt+1\91:t+1) — P<Xt+1‘elzta et+1)
— 04P<et+1|Xt+1a el:t>P<Xt+1|e1:t>
= OéP(et+1|Xt+1)P(Xt+1|elzt)

|.e., prediction + estimation. Prediction by summing out X;:

P(X1leri1) = OéP(et+1\Xt+1>2xtP(Xt+1\Xt> erq) P(x;|er)
= aP(er11]X41) 20 P (X1 [x1) Pxi|ery)

f1:t+1 — FORWARD(flzt, et+1) where fl:t - P(Xt|61:t)
Time and space constant (independent of ?)

Chapter 15, Sections 1-5
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Filtering example

0.500 0.627
0.500 0.373
True 0.500 0.318 O.§83

False 0.500 0.182 0.117

P(U,)

04
0.2
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