What is Reinforcement Learning?

® Anapproach to Artificial Intelligence
® Learning from interaction
® Goal-oriented learning

® Learning about, from, and while interacting with an
external environment

® Learning what to do—how to map situations to
actions—so as to maximize a humerical reward
signal

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Complete Agent

®* Temporally situated

® Continual learning and planning

* Object is to affect the environment

* Environment is stochastic and uncertain

Environment

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Key Features of RL

® |Learner is not told which actions to take
®* Trial-and-Error search
® Possibility of delayed reward

= Sacrifice short-term gains for greater long-
term gains

®* The need to explore and exploit

* Considers the whole problem of a goal-directed
agent interacting with an uncertain environment

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Supervised Learning

Training Info = desired (target) outputs

}

S ised L I

Error = (target output — actual output)

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Reinforcement Learning

Training Info = evaluations (“rewards” / “penalties™)

}

mputs EEP . M Outputs (“actions”)

Objective: get as much reward as possible

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Elements of RL

Model of
environment

* Policy: what to do
®* Reward: what is good

® Value: what is good because it predicts reward
® Model: what follows what

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

The Exploration/Exploitation Dilemma

[1 Suppose you form estimates

Q(a)= Q*(Cl) action value estimates

[J The greedy action att is g,

a, = argmax Q,(a)

a, = a, = exploitation

a, # a, = exploration

[] You can’t exploit all the time; you can’t explore all the
time

[1 You can never stop exploring; but you should always
reduce exploring. Maybe.

e-Greedy Action Selection

[1 Greedy action selection:

a,

= a; =argmaxQ,(a)
[1 e-Greedy:

{ a, with probability 1 — ¢
a =

t random action with probability &

. .. the simplest way to balance exploration and exploitation

Softmax Action Selection

[1 Softmax action selection methods grade action
probs. by estimated values.

[1 The most common softmax uses a Gibbs, or
Boltzmann, distribution:

Choose action a on play ¢ with probability
00/(0)/7
22:1 eQr(b)/T

where 71s the
“computational temperature”

The Agent-Environment Interface

-)
>[Agent |
state rreward action
S t &
[T
| 1 h
| S+1 | Environment

Agent and environment interact at discrete time steps: ¢=20,1, 2, ...

Agent observes state at stepz: s, €5
produces action at step¢: a, € A(s,)

gets resulting reward: 7, €R

t+1

and resulting next state: s,

—@ .FHIQ crt+2@ olt3 St43)—"""
' J a NG \ 7 4 +3

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

The Agent Learns a Policy

Policy at step ¢, 7, :
a mapping from states to action probabilities

7T, (s, a) = probability thata, = a when s, = s

[1 Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

[] Roughly, the agent’s goal is to get as much reward as 1t
can over the long run.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Goals and Rewards

[1 Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it 1s surprisingly flexible.

[1 A goal should specify what we want to achieve, not how
we want to achieve it.

L] A goal must be outside the agent’s direct control—thus
outside the agent.

[1 The agent must be able to measure success:
» explicitly;
» frequently during its lifespan.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Returns

Suppose the sequence of rewards after step £1s :

7;+19rt+29’/2+39

What do we want to maximize?

In general,

we want to maximize the expected return, E{R, }, for each step ¢.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R =r +r ,++r,

where T 1s a final time step at which a terminal state is reached,
ending an episode.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

o0
— 2 _ k
]zr =l +7/rt+2 Ty Vi3 T = 27/ Vi kr1o
k=0

where 7,0 <y <1, 1s the discount rate.

shortsighted 0 <— y — 1 farsighted

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of

track.
_— U -

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

= return = number of steps before failure

As a continuing task with discounted return:
reward = —1 upon failure; 0 otherwise

= return = —y*, for k steps before failure

In either case, return 1s maximized by
avoiding failure for as long as possible.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Another Example

Get to the top of the hill
as quickly as possible.

reward = —1 for each step where not at top of hill

— return = —number of steps before reaching top of hill

Return 1s maximized by minimizing
number of steps to reach the top of the hill.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

10

A Unified Notation

[1 In episodic tasks, we number the time steps of each
episode starting from zero.

[1 We usually do not have to distinguish between episodes, so
we write S, instead of S, ; for the state at step ¢ of
episode J.

[1 Think of each episode as ending in an absorbing state that
always produces reward of zero:

@ rp=+1 r,=+1 rg=+1 ©r4:8
.—»(: >—><:>—> re =

[We can cover all cases by writing R =>

k=0
where ycan be 1 only if a zero reward absorbing state is always reached.

+k+1°

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

The Markov Property

[] By “the state” at step #, the book means whatever information 1s
available to the agent at step ¢ about its environment.

[1 The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

[1 Ideally, a state should summarize past sensations so as to retain
all “essential” information, 1.e., it should have the Markov
Property:

7,

i

t—l’at—l"“’rl’SO’aO}:
=s'.r

Pr{StH Tl = I"| Stﬂat}

, L
for all s, , and histories s,,a,,7,s,_,a,_,,...,1,8,,a,.

— o —
Pr{SHl =8,ha = I”l S5dys

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

12

Markov Decision Processes

[1 If a reinforcement learning task has the Markov Property, it 1s
basically a Markov Decision Process (MDP).
[] If state and action sets are finite, it 1s a finite MDP.
[1 To define a finite MDP, you need to give:
= state and action sets
= one-step “dynamics” defined by transition probabilities:
P: =Pr{s

= S" s, =S,a, = a} for all 5,5 € S, a € A(s).

= reward probabilities:

a _ _ . /
R, = E{r[+1 s, =s,a,=a,s,, =S } for all s,s" € S, a € A(s).

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

1R

An Example Finite MDP

Recycling Robot

[1 At each step, robot has to decide whether 1t should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3)
go to home base and recharge.

[] Searching 1s better but runs down the battery; if runs out of
power while searching, has to be rescued (which 1s bad).

[1 Decisions made on basis of current energy level: h gh,l ow.

[1 Reward = number of cans collected

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

Recycling Robot MDP

S = {hi gh, | ow} R***°" = expected no. of cans while searching
A(hi gh) = {sear ch, wai t } R"™" = expected no. of cans while waiting
A(l ow) = {sear ch,wai t, r echar ge} Reeh > R

1, R 18, —3

B Rsearch

1, 0 recharge
®

sear ch

wai t
1o Rsearch 1_3, Rsearch 1, R

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

Bellman Equation for a Policy 7

The basic 1dea:
2 3
R =r +yn, vV s+,
2
t+1+7/(t+2+7/t+3+7/ ’/;+4.”)
+ 7R

t+1 r+1

So: Vi(s)=E, <{Rtl S, :S}
= E;z %Hl + yV(SHl)St = S}

Or, without the expectation operator:

V7 (s) = 2 a(s.a)) PoL[RE + 7V (s)]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

17

Gridworld

[1 Actions: north,sout h, east , west ; deterministic.

[1 If would take agent off the grid: no move but reward = —1

[1 Other actions produce reward = 0, except actions that
move agent out of special states A and B as shown.

AN BN
+5‘
#0] | B’ 4%—>
A f Actions
(@)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

3.3

8.8

4.4

5.3

1.5

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

-1.0

-0.4

-0.4

-0.6

-1.2

-1.9

-1.3

-1.2

-1.4

-2.0

(b)

State-value function
for equiprobable
random policy;
v=0.9

10

Why Optimal State-Value Functions are Useful

Any policy that i1s greedy with respect to V' is an optimal policy.

Therefore, given V: one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

A B\ 22.0(24.4/22.0/19.4/17.5 — <—I—> « <—I—> “«—
) \
+5 19.8/22.0{19.8/17.8/16.0 IR 1 il . P
40| | B’ 17.819.817.8/16.0{14.4 Lit1gad
16.0{17.8/16.0{14.4/13.0 T_, 1 J 4_T 4_T
A"f 14.4/16.0{14.4/13.0{11.7 t, + o T
a) gridworld b) V*) ¥

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Q-Learning: Off-Policy TD Control

One - step Q - learning :

06-4) ¢ 05,4)+ ., +7max 06, a)- 06.q)

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g., e-greedy)
Take action a, observe r, s’
Q(s,a) — Q(s,a) + ofr + ymaxy Q(s', ') — Q(s, a)]
s« s

until s i1s terminal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

M

