
adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

What is Reinforcement Learning?

• An approach to Artificial Intelligence
• Learning from interaction
• Goal-oriented learning
• Learning about, from, and while interacting with an

external environment
• Learning what to do—how to map situations to

actions—so as to maximize a numerical reward
signal

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Complete Agent

• Temporally situated
• Continual learning and planning
• Object is to affect the environment
• Environment is stochastic and uncertain

Environment

actionstate

reward
Agent

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Key Features of RL

• Learner is not told which actions to take
• Trial-and-Error search
• Possibility of delayed reward

Sacrifice short-term gains for greater long-
term gains

• The need to explore and exploit
• Considers the whole problem of a goal-directed

agent interacting with an uncertain environment

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Supervised Learning

Training Info = desired (target) outputs

Supervised Learning
SystemInputs Outputs

Error = (target output – actual output)

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Reinforcement Learning

Training Info = evaluations (“rewards” / “penalties”)

RL
SystemInputs Outputs (“actions”)

Objective: get as much reward as possible

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Elements of RL

• Policy: what to do
• Reward: what is good
• Value: what is good because it predicts reward
• Model: what follows what

Policy

Reward

Value
Model of

environment

The Exploration/Exploitation Dilemma

❐ Suppose you form estimates

❐ The greedy action at t is at

❐ You can’t exploit all the time; you can’t explore all the
time

❐ You can never stop exploring; but you should always
reduce exploring. Maybe.

Qt(a) ≈ Q*(a) action value estimates

at
* = argmax

a
Qt(a)

at = at
* ⇒ exploitation

at ≠ at
* ⇒ exploration

ε-Greedy Action Selection

❐ Greedy action selection:

❐ ε-Greedy:

at = at
* = arg max

a
Qt(a)

{ at
* with probability 1 − ε

random action with probability ε
at =

. . . the simplest way to balance exploration and exploitation

Softmax Action Selection

❐ Softmax action selection methods grade action
probs. by estimated values.

❐ The most common softmax uses a Gibbs, or
Boltzmann, distribution:

Choose action a on play t with probability

eQt (a) τ

eQt (b) τ
b=1

n∑
,

where τ is the
“computational temperature”

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

The Agent-Environment Interface

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

Agent and environment interact at discrete time steps : t = 0,1, 2, K
 Agent observes state at step t : st ∈S
 produces action at step t : at ∈ A(st)
 gets resulting reward : rt +1 ∈ℜ
 and resulting next state: st +1

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

The Agent Learns a Policy

Policy at step t, πt :
 a mapping from states to action probabilities

 πt (s, a) = probability that at = a when st = s

❐ Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

❐ Roughly, the agent’s goal is to get as much reward as it
can over the long run.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

Goals and Rewards

❐ Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it is surprisingly flexible.

❐ A goal should specify what we want to achieve, not how
we want to achieve it.

❐ A goal must be outside the agent’s direct control—thus
outside the agent.

❐ The agent must be able to measure success:
explicitly;
frequently during its lifespan.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Returns

Suppose the sequence of rewards after step t is :
 rt +1, rt+ 2 , rt + 3, K
What do we want to maximize?

In general,

we want to maximize the expected return, E Rt{ }, for each step t.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

 Rt = rt +1 + rt +2 +L + rT ,
where T is a final time step at which a terminal state is reached,
ending an episode.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

 Rt = rt +1 +γ rt+ 2 + γ 2rt +3 +L = γ krt + k +1,
k =0

∞

∑
where γ , 0 ≤ γ ≤ 1, is the discount rate.

shortsighted 0 ← γ → 1 farsighted

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track.

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure
⇒ return = number of steps before failure

As a continuing task with discounted return:
reward = −1 upon failure; 0 otherwise

⇒ return = −γ k , for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Another Example

reward = −1 for each step where not at top of hill
⇒ return = − number of steps before reaching top of hill

Get to the top of the hill
as quickly as possible.

Return is maximized by minimizing
number of steps to reach the top of the hill.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

A Unified Notation

r1 = +1
s0 s1

r2 = +1
s2

r3 = +1 r4 = 0
r5 = 0

❐ In episodic tasks, we number the time steps of each
episode starting from zero.

❐ We usually do not have to distinguish between episodes, so
we write instead of for the state at step t of
episode j.

❐ Think of each episode as ending in an absorbing state that
always produces reward of zero:

❐ We can cover all cases by writing

st st, j

 Rt = γ krt +k +1,
k =0

∞

∑
where γ can be 1 only if a zero reward absorbing state is always reached.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

The Markov Property

❐ By “the state” at step t, the book means whatever information is
available to the agent at step t about its environment.

❐ The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

❐ Ideally, a state should summarize past sensations so as to retain
all “essential” information, i.e., it should have the Markov
Property:

Pr st +1 = ′ s ,rt +1 = r st ,at ,rt , st −1,at −1,K,r1,s0 ,a0{ }=

 Pr st +1 = ′ s ,rt +1 = r st ,at{ }
for all ′ s , r, and histories st ,at ,rt , st −1,at −1,K,r1, s0 ,a0.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Markov Decision Processes

❐ If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

❐ If state and action sets are finite, it is a finite MDP.
❐ To define a finite MDP, you need to give:

state and action sets
one-step “dynamics” defined by transition probabilities:

reward probabilities:

Ps ′ s
a = Pr st +1 = ′ s st = s,at = a{ } for all s, ′ s ∈ S, a ∈ A(s).

Rs ′ s
a = E rt +1 st = s,at = a,st +1 = ′ s { } for all s, ′ s ∈ S, a ∈ A(s).

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

An Example Finite MDP

Recycling Robot

❐ At each step, robot has to decide whether it should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3)
go to home base and recharge.

❐ Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which is bad).

❐ Decisions made on basis of current energy level: high, low.
❐ Reward = number of cans collected

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

Recycling Robot MDP

S = high,low{ }
A(high) = search, wait{ }
A(low) = search,wait, recharge{ }

Rsearch = expected no. of cans while searching
Rwait = expected no. of cans while waiting
 Rsearch > Rwait

search

high low
1, 0

 1—β , —3

search

recharge

wait

wait

search1—α , R

β , R search

α, Rsearch

1, R wait

1, R wait

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

Bellman Equation for a Policy π

The basic idea:

Rt = rt +1 + γ rt +2 +γ 2rt + 3 +γ 3rt + 4 L

= rt +1 + γ rt +2 + γ rt +3 + γ 2rt + 4 L()
= rt +1 + γ Rt +1

Vπ (s) = Eπ Rt st = s{ }
= Eπ rt +1 + γ V st +1() st = s{ }

So:

Or, without the expectation operator:

V π (s) = π (s,a) Ps ′ s
a Rs ′ s

a + γV π (′ s)[]
′ s

∑
a

∑

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ If would take agent off the grid: no move but reward = –1
❐ Other actions produce reward = 0, except actions that

move agent out of special states A and B as shown.

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A’

B’+10

+5

Actions

(a) (b)

State-value function
for equiprobable
random policy;
γ = 0.9

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 25

Why Optimal State-Value Functions are Useful

V∗Any policy that is greedy with respect to is an optimal policy.

V∗Therefore, given , one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

a) gridworld b) V* c) ≠*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A’

B’+10

+5

π*

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Q-Learning: Off-Policy TD Control

One - step Q - learning :

Q st , at()← Q st , at()+ α rt +1 +γ max
a

Q st+1, a()− Q st , at()[]

