CONSTRAINT SATISFACTION PROBLEMS

Chapter 5

1

Outline

 CSP examples

> Backtracking search for CSPs

> Problem structure and problem decomposition

> Local search for CSPs

Chapter 5

2

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box"—any old data structure
that supports goal test, eval, successor

CSP: states and goal test conform a standard, structured and simple representation.
state is defined by variables X; with values from domain D);

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

- state: assignment of variables {Xi=a, Xj=Db..}

- assignment is consistent or legal if not violates constraints

- solution: a complete assignment that satisfies all constraints
- some CFPs require soln that maximize objective function

Chapter 5 3

Example: Map-Coloring

Northern
Territory
Western Queensland
Australia
South
. —-—___'_"‘_“‘—'—-—-—-—._/\,-
Australia
New South Wales

hﬁ;\\

Tasmania

Variables WA, NT, Q, NSW,V, SA, T

Domains D; = {red, green,blue}

Constraints: adjacent regions must have different colors
e.g., WA # NT (if the language allows this), or
(WA, NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .

Chapter 5 4

Example: Map-Coloring contd.

>
\~_~\\

Tasmv’a

Solutions are assignments satisfying all constraints, e.g.,

{WA=red, NT = green,QQ =red, NSW = green,V =red, SA=blue, T = green}

There are different solutions.

Chapter 5 5

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

Maybe easier to visualize?

O
@

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Chapter 5

6

Start from initial-state={}, assign a value in each step.

Varieties of CSPs

Discrete variables , _
.. . . | : v Depth-first-search is
finite domains; size d = ((d") complete assignments why? oopular. Why?
¢ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)
¢ e.g., job scheduling, variables are start/end days for each job
> need a constraint language, e.g., StartJob, +5 < Start.Jobs
{> linear constraints solvable, nonlinear undecidable

e.q.?

enumerating
assignments not

.) possible
Continuous variables

¢ e.g., start/end times for Hubble Telescope observations
> linear constraints solvable in poly time by LP methods

Chapter 5 7

Varieties of constraints

Unary constraints involve a single variable,

e.g., SA # green

Binary constraints involve pairs of variables,

eg, SALWA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
— constrained optimization problems

Chapter 5

Example: Cryptarithmetic

O DE©

M|+
o|— -
Clz =
0O O

Variables: ' T"U W R O

Constraints

alldif{ F, T,U, W, R,O) what else?

Chapter 5 9

Example: Cryptarithmetic

constraint hypergraph

o|— -
Clz =
0O O

|+

& &

Variables: /' T U W R O X, X9 X3

Constraints
alldifi F,' T, U, W, R, O)
O+0=R+10-X,, etc.

Chapter 5 9

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration

Spreadsheets Absolute vs. preference constraints
Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Chapter 5 10

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
{ Initial state: the empty assignment, { }

{» Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

> Goal test: the current assignment is complete

1) This is the same for all CSPs!

2) Every solution appears at depth n with 7 variables

= use depth-first search d values
3) Path is irrelevant, so can also use complete-state formulation
4) How many leaves?

Chapter 5 11

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
{ Initial state: the empty assignment, { }

{» Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

> Goal test: the current assignment is complete

1) This is the same for all CSPs!

2) Every solution appears at depth n with 7 variables

= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b= (n — ()d at depth 7, hence n!d" leaves!!!!

Chapter 5 11

Backtracking search

Variable assignments are commutative, i.e.,
[WA=redthen NT = green] sameas [NT' = greenthen WA = red]

Only need to consider assignments to a single variable at each node
= b=ad and there are d" leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n =~ 25

Chapter 5 12

Depth-first-search: Backtracking

» A variant of depth-first search called backtracking BACKTRACKING search
uses still less memory.

» Only one successor is generated at a time rather than all successors;
» Each partially expanded node remembers which successor to generate next.

> |n this way, only O(m) memory is needed rather than O(bm).

r@®

LT
n

ST
PR

Emre Ugur

Backtracking search

function BACKTRACKING-SEARCH(¢sp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure

if assignment is complete then return assignment

var<«— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp| then

add {var = value} to assignment
result «<— RECURSIVE-BACKTRACKING (assignment, csp)
if result # failure then return result

remove {var = value} from assignment
return failure

add backtracking search from pg. 76

Chapter 5

13

Backtracking example

53

Chapter 5 14

Backtracking example

U

—]

o o

Backtracking example

U

—]

¢ ¢ &

/\

¢ &

Backtracking example

—]

¢ ¢ &

. . Uninformed algorithm. No big expectations
‘_L, ‘_L’ Problem: 4-coloring of 50 USA states

of consistency checks:

- plain backtracking: >1,000K

/\ - forward checking: >1,000K

- FC+MRV: 60

‘p‘% ‘\QL% Problem: n-queens

of consistency checks:

- plain backtracking: >40,000K
- forward checking: >40,000K
- FC+MRV: 717K

Chapter 5 17

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

Chapter 5 18

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values

SOER Somm =~tpe

called "the most constrained variable"

Uninformed algorithm. No big expectations
Problem: n-queens

of consistency checks:

- plain backtracking: >40,000K

- BT+MRV > 13,500K

- forward checking: >40,000K

- FC+MRV: 717K

Chapter 5 19

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

R~ R~

Attempt to reduce branching factor of future choices by selecting the variable that is
involved in the largest number of constraints on other unassigned variables.

Chapter 5 20

Least constraining value

Given a variable, choose the least constraining value:

the one that rules out the fewest values in the remaining variables
I.e. leave the max flexibility for subsequent variable assignments.

“QL% Allows 1 value for SA
o4

. ‘ Allows 0 values for SA
Combining these heuristics makes 1000 queens feasible

So far, we only considered the constraints on a variable only at a time

Chapter 5 21

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

=S

WA NT Q NSW V' SA T

Chapter 5 22

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SIS

WA NT Q NSW \'J SA T
ErE[ErE/ErE[EeE[EeE[EEE][E N
| vejmreE[meE[EeE] PE[EEE

Chapter 5 23

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

e S -

WA NT Q NSW V' SA T

Chapter 5

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

Lf:"‘\l ';: "‘_L%_"_%

WA NT Q NSW Vv SA T
ErE[EeE/ErE[/EeE[Ee /e E[EEE
| "ejerEjee (e E] PE[EEE
I | I ireni E[EEE
I | B[. | — | B

But probably we would select either NT or SA

Chapter 5 25

Constraint propagation

SSE SSEA S~

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn't provide early detection for all failures:

WA NT Q NSW v SA T

ENEENFEENFEIEfEIE"EIEEEIETE
B "EjEFEEfFEETE) BB D
] BT |IE EETE EENH

N'T and S A cannot both be blue!

variable onto other variables.

Constraint propagation repeatedly enforces constraints locally
general term for propagating the implications of a constraint on one

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed v

SSEA SSE o~

WA

NT

Chapter 5

27

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed v

SSEA SSE o~

WA NT Q NSW V' SA

C_ 1Ire» (I

\}/

Chapter 5

28

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed v

SR SSEN Sw
L NTl :Q: INSWZ|!vl Sml ITI

\{/

If X loses a value, neighbors of X need to be rechecked

Chapter 5

29

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed v

SN S S
L NT_I :Q: INSWZ|!vl) (I
{ e

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Chapter 5

Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X1, Xy, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;)«<— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X; in NEIGHBORS[X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed < false
for each z in DoMAIN[X}] do

if no value y in DOMAIN[X/] allows (z,y) to satisfy the constraint X; < X

then delete = from DOMAIN[X;]; removed < true
return removed

nAd ut detecting all 1s NP-har
O(n’d’ but d 11 is NP-hard

~ compute!

Chapter 5

31

Constraint Propagation Example

R »*Different-color constraint

Graph Coloring

Initial Domains are indicated VE

Arc examined |Value deleted \

Each undirected constraint arc is really two directed constraint arcs, the
effects shown above are from examining BOTH arcs.

http://web.mit.edu/6.034/wwwbob/constraint.pdf

Constraint Propagation Example

14 e*Different-color constraint

Graph Coloring

Initial Domains are indicated VE

Arc examined |Value deleted \

V-V, none a
Vi Vs Vi) EOH—

V-V, none
V,-V, none

http://web.mit.edu/6.034/wwwbob/constraint.pdf

Constraint Propagation Example

Emre Ugur

But, arc consistency is not enough in general

Graph Colorin
P J @ arc consistent but

- No solutions
GRS

arc consistent but 2
@ solutions B,R,G ;

I

Problem structure

O
@

Tasmania and mainland are independent subproblems

|dentifiable as connected components of constraint graph

Chapter 5 32

Problem structure contd.

Suppose each subproblem has ¢ variables out of 7 total

Worst-case solution cost is n/c - d°, linear in n

E.g.,_n:8(), d=2, c=20
2%0 = 4 billion years at 10 million nodes/sec
4-2% = 0.4 seconds at 10 million nodes/sec

Chapter 5 33

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in

O(n d?) time
Compare to general CSPs, where worst-case time is O(d’”)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Chapter 5 34

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

:e oz

2. For j from n down to 2, apply REMOVEINCONSISTENT(Parent(X;), X;)
why do wé remove

3. For j from 1 to n, assign X ; consistently with Parent(X;) in backwards order?

Chapter 5 35

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

& = S
® ©

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(7777), very fast for small ¢

1. Choose a subset S of variables such that constraint graph becomes tree.

2. For each possible assignment of S that satisfies all constraints on S
(a) remove from domains of the remaining variables that are inconsistent with assign. of S
(b) if remaining CSP has a solution..

Chapter 5 36

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

& = S
® ©

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d“ - (n — c¢)d?), very fast for small ¢

1. Choose a subset S of variables such that constraint graph becomes tree.

2. For each possible assignment of S that satisfies all constraints on S
(a) remove from domains of the remaining variables that are inconsistent with assign. of S
(b) if remaining CSP has a solution..

Chapter 5 36

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

Chapter 5

37

Local search for CSP

» Min-conflicts heuristic: select the value that results in min number
of conflicts with other variables. Surprisingly effective

function MIN-CONFLICTS(csp, maz_steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up

current < an initial complete assignment for csp
for i = 1 to maz_steps do
if current is a solution for ¢sp then return current
var +— a randomly chosen conflicted variable from csp. VARIABLES
value — the value v for var that minimizes CONFLICTS(var, v, current, csp)
set var = value in current
return failure

N PwlE W
o 3
H B
o
W
L]
W
[

-
2
LR
LR
0

- KX
L B

Example: 4-Queens

States: 4 queens in 4 columns (4* = 250 states)
Operators: move queen in column
Goal test: no attacks

Evaluation: h(n) = number of attacks

N o
H B

h=5 h=2 h=0

Chapter 5 38

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

lterative min-conflicts is usually effective in practice

Chapter 5

