Today — Part 1: Uncertainty

» Only a degree of belief

» Use probability theory
» Assign to each sentence a numerical degree of belief.
» Not degree of truth!
» Summarizing the uncertainty that comes from laziness, ignorance.

» Random variables

» Joint and marginal distributions

» Conditional distributions

» Product rule, chain rule, Bayes' rule

» Inference

» Independence, conditional independence



Uncertainty

General situation:

" Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is

present)
" Model: Agent knows something about how the known
variables relate to the unknown variables

Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge



Random Variables

A random variable is some aspect of the world about which w
(may) have uncertainty

" R=Isitraining?
" T=Isit hot or cold?
" D =How long will it take to drive to work?
" L=Where is the ghost?
We denote random variables with capital letters
Like variables in a CSP, random variables have domains
" Rin {true, false} (often write as {+r, -r})
" Tin {hot, cold}
" Din |0, )
" Lin possible locations, maybe {(0,0), (0,1), ...}




" Associate a probability with each value

" Temperature:

Probability Distributions

P(T)
T P
hot 0.5
cold | 0.5

" Weather:

P(W)
wW P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number
P(W = rain) = 0.1

Must have;

Ve P(X =x2)>0

and

Y P(X=2z)=1



Joint Distributions

" A joint distribution over a set of random variables: X1, X2,...Xn
specifies a real number for each assignment (or outcome):

P(x1,xo,...2n)

P(x1,z0,...20) > 0O

>y P(x1,z0,...20n) = 1

(z1,22,...71)
Size of distribution if n variables with domain sizes d?

P(T,W)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain | 0.3

" For all but the smallest distributions, impractical to write out!




Prior probability

Prior or unconditional probabilities of propositions
e.g., P(Cavity=true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = (0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)
P(Weather, Cavity) = a 4 x 2 matrix of values:

Weather = |sunny rain cloudy snow
Cavity=true [0.144 0.02 0.016 0.02
Cavity = false|0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points
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Probabilistic Models

] ic ai0i SRR Distribution over TW
A probabilistic model is a joint distribution IStribu v

over a set of random variables T W P

hot sun 0.4
hot rain 0.1

Probabilistic models:
" (Random) variables with domains

" Assignments are called outcomes cold sun 0.2
" Joint distributions: say whether assignments d .
(outcomes) are likely co rain 0.3
" Normalized: sum to 1.0 _
" Ideally: only certain variables directly interact Constraint over TW
. . : T W P
" Constraint satisfaction problems:
" Variables with domains hot sun T
" Constraints: state whether assignments are .
possible hot rain F
* Ideally: only certain variables directly interact cold sun F
cold rain T




Events

" An eventis a set E of outcomes

P(E)Y= )  P(z1...zn)
@@l
" From a joint distribution, we can calculate the
probability of any event

" Probability that it’s hot AND sunny?
" Probability that it's hot?
" Probability that it’s hot OR sunny?
" Typically, the events we care about are partial
assignments, like P(T=hot)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Quiz: Events

" P(+x, +y) ?

" P(+x) ?

" P(-y OR+x) ?

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

—-
P(t) =) P(ts)

—-
P(s) = Z P(t,s)
t

P(X1 ==z1) =Y P(X1=u11,X0=1xp)

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4




Quiz: Marginal Distributions

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

e ——
P(x) =) P(z,y)
Y

—_—
P(y) = > P(z,y)




Conditional probability

Conditional or posterior probabilities
e.g., P(cavity|toothache) = 0.8
i.e., given that toothache is all I know
NOT “if toothache then 80% chance of cavity”

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P(cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,

but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity|toothache,49ersWin) = P(cavity|toothache) = 0.8
This kind of inference, sanctioned by domain knowledge, is crucial
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Conditional Probabilities

" Asimple relation between joint and conditional probabilities
" Infact, this is taken as the definition of a conditional probability

P(afb) = 2La:0)

P(b)

P(T, W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a)

— — 2
P(W:s|T:c):P(W sT=c) _02

P(T = c¢) 0.5

=

=P(W=s,T=c¢c)+PW=r,T =c)
=0.24+0.3 =0.5

= 0.4



Quiz: Conditional Probabilities

" Plx | +y)?

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
X +y 0.4 " P(-x | +y) ?
X y 0.1

" P(y | +x)?



Conditional Distributions

® Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions

- P(W|T = hot)

Joint Distribution

P(T,W)
W P
T W P
sun 0.8
~~ hot sun 0.4
i rain 0.2 .
E hot rain 0.1
= P(W|T = cold) cold | sun 0.2
W P cold rain 0.3
sun 0.4
rain 0.6




Normalization Trick

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(W|T = ¢)

sun

rain




Normalization Trick

POW=sT=¢) = LW =s8T=c)

P(T = ¢)
— P(W == S,T — C)
P(TjW) —P(W:S’T:C)_l_P(W:T,T:c)
0.2
T W P ~ 02403 0.4 p(W|T _ C)

- Su'n > — W P
hot rain 0.1 v ¢
o o % P(W =rT =c) rain | 0.6
cold rain 0.3 P(W=rT =c) = P(—Tr,: C)_ c

= P(W:T,Tzc)
—P(W:‘S’T:C)_I_P(W:T,T:c)

0.3
pr— — 0,6
0.240.3




Normalization Trick

P(W=s,T=c)
P(T =c¢)
. P(W =s,T =c)
T PW=s,T=c)+PW=r,T=c)

P(W=s|T=c) =

0.2+4+0.3
P(T, W) SELECT the joint NORMALIZE the
probabilities selection P(WIT =
= _cC
T W P matching the P(C7 W) (make it sum to one) ( ‘ )

hot sun 0.4 evidence T W P W P
hot | rain | 0.1 — cold | sun 102 I sun | 0.4
cold sun 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

P(W=nr,T =c)

P(T =c¢)
. P(W=nrT=c)
T PW=sT=c)+P(W=nrT=c)
03
02403

P(W=rT=c¢c)=

=0.6



Quiz: Normalization Trick

" P(X|Y=-y)?
P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

SELECT the joint

probabilities
matching the
evidence

ﬁ

NORMALIZE the
selection
(make it sum to one)

ﬁ



Probabilistic Inference

" Probabilistic inference: compute a desired
probability from other known probabilities (e.g.
conditional from joint)

" We generally compute conditional probabilities
* P(on time | no reported accidents) = 0.90
" These represent the agent’s beliefs given the evidence

" Probabilities change with new evidence:
" P(on time | no accidents, 5 a.m.) =0.95
* P(on time | no accidents, 5 a.m., raining) = 0.80
" Observing new evidence causes beliefs to be updated




Inference by enumeration

Start with the joint distribution:

toothache -1 toothache

catch| — catch] catch| — catch
cavity | .108 | .012 .072| .008
—1cavity | .016| .064 144 | 576

For any proposition ¢, sum the atomic events where it is true:

P(¢) = LiywpeP (W)

Chapter 13 17



Inference by enumeration

Start with the joint distribution:

toothache -1 toothache

catch| — catch] catch| — catch
cavity | .108 | .012 .072| .008
-1 cavity | .016| .064 144 | 576

For any proposition ¢, sum the atomic events where it is true:

P(¢) = LiywpeP (W)

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Chapter 13 18



Inference by enumeration

Start with the joint distribution:

toothache -1 toothache

catch| — catch] catch| — catch
cavity | .108|.012 | .072] .008
-1 cavity | .016| .064 144 | 576

For any proposition ¢, sum the atomic events where it is true:

P(¢) = LiywpeP (W)

P(cavityVtoothache) = 0.10840.012+0.0724-0.008+0.0164-0.064 = 0.28
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Inference by enumeration

Start with the joint distribution:
toothache

=1 toothache

catch| — catch] catch| — catch

cavity | .108
1 cavity ||.016 | .064

144 | .576

Can also compute conditional probabilities:

P(—cavity A toothache)

P(toothache)
0.016 + 0.064

=04
0.108 + 0.012 4 0.016 + 0.064

P(—cavity|toothache) =

Chapter 13 20



Normalization

toothache =1 toothache

catch| —catchj catch| — catch
cavity .108-.012 .072| .008
—cavity [ .016l[[.064] | .144] 576

Denominator can be viewed as a normalization constant «

P(Cavity|toothache) = a P(Cavity, toothache)
a |P(Cavity, toothache, catch) + P(Cavity, toothache, —~catch)]

a [(0.108,0.016) + (0.012, 0.064)]

a (0.12,0.08) = (0.6,0.4)

General idea: compute distribution on query variable

by fixing evidence variables and summing over hidden variables
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Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variablesbe H =X — Y — E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y[E=e)=aP(Y,E=e) = aX,P(Y,E=¢,H=h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(d") where d is the largest arity
2) Space complexity O(d") to store the joint distribution
3) How to find the numbers for O(d") entries???
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Inference by Enumeration

" P(W)?

" P(W | winter)?

" P(W | winter, hot)?

S T W P
summe | hot sun 0.30
r
summe | hot rain 0.05
r
summe | cold sun 0.10
r
summe | cold rain 0.05
r
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter | cold rain 0.20




Inference by Enumeration

" Obvious problems:
" Worst-case time complexity O(d")

" Space complexity O(d") to store the joint distribution



Independence

A and B are independent iff
P(A|B)=P(A) or P(B|A)=P(B) or P(A,B)=P(A)P(B)

Cavity
decomposesinto \Toothache Catch

Toothache Catch ‘
Weather

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity)P(Weather)

Cavity

32 entries reduced to 12; for n independent biased coins, 2" — n
Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional independence

P(Toothache, Cavity, Catch) has 2° — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn’t depend
on whether | have a toothache:

(1) P(catchl|toothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
(2) P(catchl|toothache, —cavity) = P(catch|—cavity)

C'atch is conditionally independent of T'oothache given Cauvity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence contd.

Werite out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)

= P(Toothache|Catch, Cavity)P(Catch, Cavity)

= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

le., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust
form of knowledge about uncertain environments.
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Bayes’ Rule

Product rule P(a N b) = P(alb)P(b) = P(bla)P(a)

P(bla)P
= Bayes' rule P(a|b) = ( l‘g()b) ()
or in distribution form
P(X|Y)P(Y)

P(Y|X) =

px]  ~ CPXYIP(Y)

Useful for assessing diagnostic probability from causal probability:

P(Ef fect|Cause)P(Cause)
P(Ef fect)

E.g., let M be meningitis, S be stiff neck:

P(s|m)P(m) 0.8 x 0.0001
P(s) B 0.1

P(Cause|E f fect) =

P(m|s) = = 0.0008

Note: posterior probability of meningitis still very small!
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Quiz: Bayes’ Rule

" Given: DD
) P(W) D W P
R P wet sun 0.1
un 0.8 dry sun 0.9
rain 0.2 wet rain 0.7
dry rain | 0.3

" Whatis P(W | dry) ?



Bayes’ Rule and conditional independence

P(Cavity|toothache A catch)
= a P(toothache A catch|Cavity)P(Cavity)
= a P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Ef fecty, ..., Effect,) = P(Cause)l,P(Ef fect;|Cause)

j t A A B N

Total number of parameters is linear in n
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