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1 Definition

Lifelong robot learning can be defined as the ability of a robot to acquire an
ever-growing number of skills and knowledge over multiple domains through
autonomous task engagement and learning.

2 Overview

The key characteristics of a life learning robot are autonomous continual learning
and positive transfer of knowledge among learned tasks. The former indicates
the ability to learn tasks in an incremental manner without forgetting the al-
ready learned skills. The latter indicates the bootstrapping leverage that can
be obtained by previously learned skills. The concept of lifelong learning was
initially introduced by Thrun and Mitchell (1995), where the main focus was
knowledge transfer from one learning task to another in a given task domain.
This was formalized by extending the Markov Decision Process framework by
introducing multiple reward functions and contexts. The task of the robot was
to learn individual policies for different contexts with different reward functions.
Recently, the lifelong learning concept is revived with the increased popularity
of deep learning (Parisi et al., 2019; Lesort et al., 2019). The developments in
this front can be referred as lifelong machine learning (LML) to set it apart from
lifelong robot learning (LRL). The main focus in LML is to develop a neural net-
work architecture with a continual learning algorithm to allow transfer learning,
i.e. accelerating the learning of the subsequent novel data or task without for-
getting the knowledge or skill acquired by previous learning experiences (Silver
et al., 2013). LRL often involves LML but it may have additional components



as part of the robot cognitive architecture (Vernon et al., 2016) as embodiment
and autonomous interaction with the environment is at the core of LRL (Asada
et al., 2009). As such, a lifelong learning robot needs decision mechanisms to
control for example which skills to improve upon and when to disengage an
active task execution (see Figure 2). In this sense, with classical robot termi-
nology, a lifelong learning robot can be considered as having ’behavior-based’
control (see Arrichiello (2020) within this book) where behaviors are generated
with respect to task learning and value systems.
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Figure 1: The general view of a lifelong robot learning (LRL) system is shown.
Lifelong machine learning (LML) is an integral part of a LRL system; but it is
not in general suitable for multi-domain heterogeneous learning tasks. There-
fore, a LRL system often involves multiple LML systems with different architec-
tures as the robot may be required to perform tasks that cannot be described by
a single learning framework. The goal of LRL is then to create an autonomous
system that can exploit multiple LML systems for effective and efficient contin-
ual learning.

In this chapter, we focus on research directions that are key for facilitating
robot lifelong learning. To be concrete, in addition to LML concepts of multi-
task learning and knowledge transfer, the topics of autonomous development,
learning abstractions and movement representations are reviewed. In this chap-
ter a ’task’ refers to a learning task; but for modeling robot tasks in general the
readers are referred to the chapter by Lima (2020) in this book. The current
state of the art in LML is primarily dominated by deep learning based methods,
which we sample and present representative approaches in this chapter; however
for a wider coverage with additional considerations, the readers are referred to
the recent reviews of Parisi et al. (2019) and Lesort et al. (2019).



3 Key Research Findings

3.1 Multiple Task Learning

A robot with lifelong learning ability must be able to learn multiple tasks that
it may face in a sequential manner or in an interleaved regime according to its
action selection mechanism or environment dynamics. When a learning system
is trained sequentially on multiple tasks, the learning parameters that are im-
portant for a particular task may be changed because of subsequent learning for
improving the performance on the novel task, thereby interfering negatively with
the initial task performance. This phenomenon is classically called catastrophic
interference or catastrophic forgetting (French, 1999, 1993). Thus, ability to
learn tasks by focusing only on the current task is not alone sufficient for LRL
because learning of the current task can destroy the earlier task knowledge vi-
olating one of the fundamental requirements of robot lifelong learning. There
are several machine learning approaches aimed to tackle catastrophic forgetting
which can be adopted to robotics, as briefly explained below.

Learning from interleaved task data. A straightforward solution to catas-
trophic forgetting is to use the data from multiple tasks in an interleaved man-
ner, often called rehearsal (Rebulffi et al., 2017). So, this approach assumes that
the data related to the tasks are available for the learner and can be rehearsed,
i.e. sampled arbitrarily. In terms of a learning robot, this means that as the
robot faces new learning tasks it has to also store the learning data so that it can
be rehearsed while learning other tasks. Thus, this approach is not practical for
learning a large number of tasks as in the case for robot lifelong learning. The
workaround for this problem is so called intrinsic replay (Draelos et al., 2017),
in which a generative model is learned to represent the samples experienced
during task learning. The generative model is then used for emulating the re-
hearsal idea when learning a new task: instead of sampling from an experience
buffer, the generative model is used to generate samples from the previously
encountered data distribution(s). Both approaches are depicted in Figure 3.1A.

Selective updating of learning parameters. A clever strategy to avoid catas-
trophic forgetting is to detect the importance of learning parameters for the
acquired tasks/knowledge, and use it to control the plasticity of the parameters
when learning subsequent tasks . With this approach the critical parameters for
the learned task are retained while other less critical parameters are allowed to
change to fulfill the new task requirements (see Figure 3.1B). With this strat-
egy Kirkpatrick et al. (2017) has shown that learning classification tasks without
forgetting is possible with a single network - without neural expansion. The ex-
tension of this idea to the reinforcement learning (RL) domain was achieved
by introducing higher-level mechanisms such as recognizing the task presented
to the network and flexible switching between tasks, which allowed DQN, the
deep neural network representing the state-action value function to learn to play
multiple Atari games (Kirkpatrick et al., 2017). A similar but more biologically
inspired approach is to require each network weight (i.e. synapse) to keep track
of its importance based on the contribution it has in reducing the error for the



learned tasks in an online fashion (Zenke et al., 2017). Both approaches yield a
regularized loss function which protects the old knowledge being overwritten by
subsequent task learning. Instead of computing or tracking the importance of
neurons independently, Fernando et al. (2017) uses evolutionary algorithm con-
cepts to find paths in the neural network representing a task skill that should
be re-used in learning subsequent tasks. Catastrophic forgetting is avoided by
the freezing of the weights on the discovered path to help preserve earlier task
knowledge and facilitate skill transfer due to the weight reuse. It has been
shown that this architecture is suitable for both classification and reinforcement
learning (albeit with a two tasks scenario) tasks. However the application to
real robotics scenarios is yet to be seen.
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Figure 2: Several multiple task learning approaches from the literature are
illustrated. The approaches in columns (A) & (B) aim to learn new tasks
without growing the learned model/network; where in (C) additional resources
are introduced to accommodate new task learning. (A) The data pertaining
to earlier tasks are retained (upper panel, e.g. Rebuffi et al., 2017) or used
to learn generative models (lower panel, e.g. Draelos et al., 2017), which are
then used to perform interleaved training when learning subsequent tasks. (B)
The plasticity of the weights are controlled based on their importance for the
current task thereby avoiding catastrophic forgetting while learning new tasks.
Importance of the weights can be set individually as shown in the upper half
(e.g. Kirkpatrick et al., 2017; Zenke et al., 2017) or based on paths leading to
the outputs as illustrated in the lower half (e.g. Fernando et al., 2017). (C)
Additional resource allocation by creating of a new network for the new task is
often accompanied by skill transfer through the creation of lateral connections
to the layers of the networks that implement the earlier tasks. While training
the new network, the weights related to the previous tasks may be allowed to
change (e.g. Li and Hoiem, 2016) or kept fixed (e.g. Rusu et al., 2016a).



Allocating additional resources. The multi-task learning methods that use
fixed computational resources are naturally bound to lose their ability to learn
with excessive number of tasks. In this case, the problem is not only that new
tasks cannot be learned; but the already learned ones may deteriorate with
the attempt of learning a new task. Therefore approaches that grow a given
learning system or create family of learners for solving ever-increasing tasks
might be better suited for LRL. The straightforward approach to take here is
to allocate independent resources for individual tasks to be learned. This could
be a reasonable choice if the tasks are independent and limited in number.
However, when tasks are logically related, learning of a new task may conflict
with an earlier one. Furthermore, if the number of tasks are not limited, serious
resource problems arise, unless no mechanisms are implemented for resource
sharing and task similarity detection with task assimilation. Because of these
reasons, usually resource allocation for new tasks is performed in moderation by
sharing some of the existing knowledge and resources. In this vein, in the work
of Rusu et al. (2016a) a new sub-network with random weights is created for
an upcoming new task, while establishing lateral connections to the previously
learned neural networks (see Figure 3.1C). To avoid the problem of destroying
earlier knowledge, the network weights for the earlier tasks are not allowed to
change when training for the new task takes place. This solves the problem of
forgetting earlier skills while making use of learned skills for positive knowledge
transfer for the novel tasks to be learned. A less radical approach taken by Li
and Hoiem (2016) keeps a set of weights shared among tasks and allows the
adaptation of all the weights with a special regularized cost to keep the old
network outputs to be stable in the face of new training. It is shown that this
approach is effective in incremental image classification tasks. However. it is not
clear how this method will perform in reinforcement learning tasks, whereas the
former approach i.e. the complete freezing of the earlier task weights idea has
been shown to work in reinforcement learning and robotic manipulation tasks
(Rusu et al., 2016a,b).

3.2 Knowledge Transfer

Knowledge transfer concept has been exploited extensively in general machine
learning; here we take a neural network point of view and focus on the issues
relevant for LRL. For a more general treatment of the topic the readers are
referred to surveys avaliable in the literature (Pan and Yang, 2010; Zhuang
et al., 2019; Weiss et al., 2016).

The knowledge transfer idea by itself does not require that the task providing
the source for the knowledge transfer to be preserved. However, in the context
of robot learning this is often the desired case, and luckily many continual multi-
task learning approaches go hand-to-hand with knowledge transfer as hinted in
the previous section. We first start with the simplest knowledge transfer ideas
and then visit those that are more suitable for LRL.

Feature extraction. A straightforward way to transfer knowledge from a
learned task to a similar one is to exploit the feature representations that have



been obtained through an initial training with a general data set in subsequent
learning task (Azizpour et al., 2016; Razavian et al., 2014). The features taken
are usually the outputs of the last hidden layer of a deep neural network, where
as the learning for subsequent tasks usually involves only the adaptation in a
newly created output layer. This approach works well for visual recognition and
classification tasks (Razavian et al., 2014; Guo et al., 2019) including learning
the effect categories as the result of robot actions (Ugur and Piater, 2014);
however it is not clear how this will generalize to complex robot (reinforcement)
learning tasks as the features developed in the neural networks for implementing
policy or value networks may be too domain specific.

Fine-tuning. Feature extraction does not change the feature representation
inherited from earlier training. Thus, it only works well if the novel task is
similar to the original task(s) that led to the formation of the features. If not,
then one can choose to adapt the weights including also the ones producing
the features, for improving the learning performance in the new task. This is
often called network fine-tuning (Li and Hoiem, 2016). To avoid catastrophic
forgetting and/or improving learning, several heuristics can be applied during
fine-tuning such as using a lower learning rate for the weights involved in com-
puting the features or freezing parts of the network (Rebuffi et al., 2017; Draelos
et al., 2017).

Clone and fine-tune. One easy and effective approach to protect skills ac-
quired earlier and facilitate skill transfer is to clone an existing network that
represents an acquired skill, and then perform the training or fine-tuning on the
cloned version. To assure positive skill transfer, the compatibility of the tasks
must be assumed; otherwise, negative transfer may occur. So in a multi-task set-
ting which network should be cloned for an upcoming new task is an issue to be
solved. This problem can be circumvented by creating a new (sub)network with
access to all earlier network outputs representing skills acquired so far, and by
keeping only the newly created weights adaptive (e.g. Rusu et al., 2016a). This
solves the problem of forgetting earlier skills while making use of the learned
skills for knowledge transfer. However, the price paid for this is significant neu-
ral resource inflation as a huge network would be formed to accommodate an
ever-growing number of tasks.

3.3 Autonomous lifelong learning and development

LML approaches in the literature either aim at creating a single dynamic net-
work to represent the targeted skill set or aim at squeezing in as many tasks as
possible to a fixed sized network with the goal of resource economy. Different
form LML, in LRL, there is no merit in requiring a single (huge) network to
capture all the skills of a robot. On the contrary, from a cognitive architecture
perspective small modules that can be easily manipulated is more beneficial.
Moreover, modularity is a basic principle that is believed to govern human
motor control (Wolpert and Kawato, 1998; Imamizu et al., 2003; Oguz et al.,
2018), and thus is a reasonable requirement for cognitive control architectures
for robots. With this, we switch our attention from isolated LML systems to



the requirements of full robotic architectures that are expected to engage in
autonomous lifelong learning or development. In this framework, one of the
critical issues is the question of among a possible set of tasks, which task the
robot should choose to learn? In the same vein, within a chosen task, the learn-
ing samples that the robot experiences is not ‘given’ but comes out based on the
robot action selection. This is so even the robot is not engaged in reinforcement
learning; but simply tries to understand the effects of its actions via supervised
learning. In general, the learning samples, the task order to be learned are not
given but are the result of the action selection implemented within the robot
cognitive architecture. Thus, robots with cognitive architectures capable of sen-
sorimotor development need to have a value system that guides the selection of
actions (Vernon et al., 2016). In the rest of the paper the concepts related to
cognitive architectures and action selection/decision making in the context of
LRL are analyzed.

3.3.1 Unsupervised Staged Development

Developmental robotics aims to develop lifelong learning robots following the
principles inspired from infant development (Lungarella et al., 2003; Asada et al.,
2009; Cangelosi and Schlesinger, 2015). Researchers in this field typically inves-
tigate various developmental stages of human infants such as emergent compe-
tencies until 12 months (Law et al., 2011) or development of tool use (Guerin
et al., 2012), and apply the developed computational models on real robot plat-
forms such as the iCub robot platform built for developmental research (Metta
et al., 2010). While broad diversity of sensorimotor skills in various stages have
been studied separately in the literature (Cangelosi and Schlesinger, 2015), ap-
proaches that span long-horizon staged development are missing. Exceptionally,
Ugur et al. (2015) studied skill development that started from behavior prim-
itive discovery stage, followed by learning of affordances (Gibson, 1986) and
goal-emulation, and finally realized imitation learning exploiting parental scaf-
folding mechanisms (Berk and Winsler, 1995). However, the transition in the
stages were manually designed in this work. On the other hand, for uncon-
strained lifelong learning, the robots should be able to autonomously decide
which learning tasks to engage and disengage in different stages, with the possi-
bility of implementing an interleaved task learning regime. In the next section,
the concept of intrinsic motivation is presented as a potential developmental
mechanism serving this purpose.

3.3.2 Intrinsic Motivation

In autonomous lifelong learning, robots are required to select what task to en-
gage next, rather than being given a sequence of tasks to complete by a human
tutor. More generally, the robot decision includes selecting which action to
take, which skill to learn, which goal to achieve, which environment to interact,
which agents to communicate etc. Especially for learning tasks where externally
defined reward or assistance are not available, developmental robotics benefits



from intrinsically motivated behaviors that maximize exploration, diversity, nov-
elty, competence or learning progress. Various robot learning algorithms and
applications exploited intrinsically motivated (IM) strategies in socially guided
learning (Ivaldi et al., 2013; Duminy et al., 2019; Fournier et al., 2019), affor-
dance learning (Ugur and Piater, 2014; Manoury et al., 2019; Baldassarre et al.,
2019), and planning (Blaes et al., 2019). For example, a particular IM signal
that maximizes learning progress (Oudeyer et al., 2007; Schmidhuber, 1991) can
guide the robot to learning regions that are neither too easy nor too difficult
to learn i.e., with the appropriate level of complexity which is inline with in-
fant data (Kidd et al., 2012). While intrinsic motivation based exploration and
learning might be one of the key characteristics of lifelong learning in robotics,
it is a challenge to autonomously decide which type of signals (e.g. novelty or
competence) to use and which learning space (e.g. space of objects, actions or
goals) to explore in different stages of development.

3.4 Learning Abstractions

Through drives such as IM, the robots focus on first simple skills and then
complex ones. Thus, lifelong learning requires the robots to acquire skills in
different levels of complexities involving high-level ones such as abstract rea-
soning and symbolic communication capabilities. The building blocks of such
high-level skills are composed of abstract structures including high-level concept
representations, discrete symbols and logical rules.

Since the early days of intelligent robotics, researchers have studied how to
bridge the representational gap between the continuous sensorimotor experience
of the robots and discrete symbols and rules used by traditional AI planning
systems. Traditionally, the cognitive architectures of these systems have been
designed as multi-layered software architectures since the time of Shakey robot
(Kuipers et al., 2017) where lower levels are used in perception and control of
the robot, and higher levels are used in complex reasoning and planning.

Typically, the symbols and rules that are effective in making plans in the
higher levels are manually coded first, and mappings from the higher levels
to the sensorimotor experience of the robots are established through manual
coding or learning (Petrick et al., 2008). However, in a life-long learning setting,
the number and range of the symbols and rules are potentially unlimited and
therefore pre-designing them is not possible. The alternative approach is to
extract the abstract representations directly from the sensorimotor experience
of the robot linking them to the goals and actions (Sun, 2000). In one of the
pioneering studies, Pisokas and Nehmzow (2005) implemented a system on a
simulated mobile robot that generates sub-symbolic structures that could be
used in planning. Sub-symbolic planning in a more complex robotic setup was
later realized by Ugur et al. (2011), where the robot learned to predict the change
in object features in response to robot’s own actions. The system was able to
chain predicted effects, generating search trees of future states of sequence of
possible actions, and finding plans in this tree to achieve given goals. While these
earlier studies formed sub-symbolic structures and used them, emergence of fully



symbolic structures that can be fed into AI planners has been recently studied
by several groups (Ugur and Piater, 2015b,a; Konidaris et al., 2018; Konidaris,
2019; James et al., 2019). These studies generally find symbols through the
organization of the continuous sensorimotor world of the robot by applying
clustering or classification algorithms, which lead to perceptual classes that
directly serve as the preconditions and outcomes of the action operators that
are fed into AI planners. While these approaches are shown to be effective
in simulation based RL settings and real robot manipulation tasks with fixed
action sets, scaling-up these methods to larger action and interaction spaces
with long-term learning in physical robots still stands as an elusive challenge.

3.5 Movement Representations for LRL

For robots, the movement generation ability is so central that often special
mechanisms for learning movement trajectories are designed. For some cases,
the acquisition of a desired skill is simply equivalent to movement trajectory
learning; in other cases, a complex movement is composed of sequenced move-
ments which must be individually learned. Thus, a brief review of popular
movement representation is in order to assess their suitability for LRL.

Besides the classical trajectory representation of splines, in the last decades
several movement representations with desirable properties have been proposed.
In particular, approaches based on dynamic systems (Schaal, 2006) and statis-
tical modeling (Calinon, 2016) have been popular in learning by demonstration
applications (see also the chapter by Calinon (2020) in this book). The so
called Dynamic Movement Primitives (DMPs) encode a demonstrated trajec-
tory (a time varying vector) as a set of differential equations (corresponding to
each component), implementing a spring-mass-damper system extended with a
non-linear function. While DMPs are designed to encode and generate individ-
ual trajectories, Probabilistic Movement Primitives (ProMPs) (Paraschos et al.,
2013) can represent distributions of trajectories, generating stochastic policies.
Recently deep neural networks are leveraged for learning powerful and robust
movement representations. Conditional Neural Movement Primitives (CNMPs)
(Seker et al., 2019), for example, not only encode trajectory distributions similar
to ProMPs, but also have the capability to encode multiple modes of operation
for the same skill, and to learn non-linear relationships between environment
properties and action trajectories from a few data samples as opposed to previ-
ous approaches.

An action encoded as one of these movement primitives should be adapted
to new situations in order to achieve new goals in lifelong learning settings. For
this, the robot is required to generate its own experiences (Hester et al., 2018;
Vecerik et al., 2019) and improve the established trajectory generation policy
based on signals about how close it is to achieve the new goals in new tasks.
While adapting to new environments it is important to retain the previously
learned skills (i.e. avoid catastrophic forgetting problem that was introduced
earlier). Within the ProMPs framework, Stark et al. (2019) used KL divergence
to stay close to the previous parameters of the model, avoiding the distortion on



the shape of the original movement (Peters et al., 2010). However a new non-
parametric ProMP was generated for each task variation. As a more general
approach, Ewerton et al. (2019) used a single model which combines ProMP and
Gaussian Processes to encode a parametric skill and condition it with the cor-
responding task parameters. For adaptation, RL was used to find the relations
between the task parameters and the ProMP model parameters by using a tra-
jectory relevance metric. Compared to the above studies, Adaptive Conditional
Neural Movement Primitives (ACNMP) (Akbulut et al., 2020) did not require
explicit optimization using metrics such as KL-divergence. Instead, ACNMP
adopted a rehearsal type of approach to learn the demonstrated trajectories
and the newly explored ones together, automatically preserving the old skills
while extending the model to the new task parameters thanks to the robust and
flexible representation ability of the network (Garnelo et al., 2018).

Although, powerful multiple trajectory learning methods have been devel-
oped, there are open questions yet to be answered. While the robot is increas-
ing its movement capacity and learning new knowledge from the environment, it
needs to automatically decide whether to assimilate the new knowledge into one
of the existing skills (e.g. by modifying the related trajectory distribution) or
accommodate a new movement primitive that represents this movement com-
pletely as a new skill. Thus, additional mechanisms should be developed for
trajectory representation in a lifelong learning robot in analogy with the as-
similation/accommodation mechanisms described for infants (Piaget and Cook,
1952).

4 Example Applications

Lifelong robot learning has a huge potential in real-word applications, although
full fledged lifelong learning robots have not yet been available in commercial
or industrial applications (Lesort et al., 2019). In particular, in addition to the
proof-of-concept realization of lifelong learning systems in simplified settings
and/or in simulation (e.g. Suro et al., 2021), applications in selected domains
can be found.

Lifelong learning efforts directed towards robotic sub-tasks such as objection
segmentation (Michieli and Zanuttigh, 2021) and object detection (Gepperth
and Hammer, 2016) can be used to construct self-improving perception mod-
ules for various robotic architectures. For example, such modules can be used
within autonomous driving systems together with end-to-end driving via (deep)
reinforcement learning (Jaritz et al., 2018) and imitation learning (Codevilla
et al., 2018) algorithms.

An important application domain that would benefit from lifelong robot
learning is manipulation in home environments (Ersen et al., 2017). As a devel-
opment in this front, Knowrob (http://knowrob.org) is proposed as a knowledge
infrastructure to enable autonomous robots to perform everyday manipulation
tasks by bridging the gap between vague task descriptions and the detailed in-
formation needed to actually to perform the tasks (Tenorth and Beetz, 2013).
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The system can be considered a direction towards a LRL system, as it computes
knowledge on demand by integrating internal or external information sources
(such as internet-based knowledge bases which is open to change over time) with
its perceptual processing. In the same vein, a web community for robot is pro-
posed (Robo-brain, http://robobrain.me) for empowering autonomous robots
by sharing their experience and task specific information via heterogeneous in-
formation sources such as internet, computer simulations and real-life robot
trials(Saxena et al., 2015). Both Robo-brain and Knowrob are developments
pointing towards cloud-based LRL architectures.

Another important application domain of LRL is social robotics, where
robots are required to interact with humans and adapt to the dynamics of
human behavior. Churamani et al. (2020b) argues that continual learning is an
essential paradigm for affective robotics as the learning objectives may change
rapidly while adapting to the behaviors of the users and their affective states and
moods. As an example, Churamani et al. (2020a) propose a robot personality
model for collaborative human-robot interactions, which generates personality-
driven behaviour in negotiation scenarios. In the social learning approach taken
by Tjomsland et al. (2020), the robot is proposed to learn to assess the social
appropriateness of its behaviors in a continual manner. Yet in another social
life-long learning application, the human facial data is incrementally acquired
during social interactions for developing a facial recognition system that takes
individual differences into consideration (Churamani and Gunes, 2020).

Although most of the current LRL applications, focus on limited domains
and given as proof of concept or constrained to simulation, these endeavours
are important steps towards real robotic applications. Such efforts coupled with
developments in LML create a strong impetus for the research towards realizing
robotic systems with continual world modeling and task learning ability that
can be deployed in general task domains.

5 Future Directions for Research

As hinted in the previous section, a grand challenge for robotics research is to
develop cognitive architectures combining control, learning and reasoning so as
to sustain autonomous lifelong learning in general settings. In the recent years
significant progress in error gradient based deep learning and symbolic/hybrid
reasoning approaches have been made. In particular, the developments in flex-
ible movement representations, symbol formation, continual learning and skill
transfer form a firm basis for robot lifelong learning. It is expected that life-
long learning robots will include a variety of cognitive modules representing
e.g. intrinsic motivation and other value systems to guide task engagement and
information seeking behavior. For the robots in social settings, additional mod-
ules inspired from social psychology and neuroscience implementing a range of
modulatory systems such as artificial pain (Asada, 2019), emotion (Michaud
et al., 2000; Kirtay et al., 2019) and empathy (Asada, 2015) are required for
human-like autonomous learning, for which the analysis is left for another re-
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view.

To sum up, with the transfer of growing knowledge in artificial intelligence to
robotics, one may expect a breakthrough in the next decade in how robotic sys-
tems acquire knowledge and skills autonomously to become more dexterous and
socially competent. Convergence of the research on developmental robotics and
lifelong machine learning towards developing multi-domain, multi-task human-
like learning robots will be the key for the realization of this breakthrough.
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