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Abstract

Learning to interact with the environment not only empowers the agent with manipulation capability but also generates infor-
mation to facilitate building of action understanding and imitation capabilities. This seems to be a strategy adopted by biological
systems, in particular primates, as evidenced by the existence of mirror neurons that seem to be involved in multi-modal action
understanding. How to benefit from the interaction experience of the robots to enable understanding actions and goals of other
agents is still a challenging question. In this study, we propose a novel method, deep modality blending networks (DMBN), that
creates a common latent space from multi-modal experience of a robot by blending multi-modal signals with a stochastic weighting
mechanism. We show for the first time that deep learning, when combined with a novel modality blending scheme, can facili-
tate action recognition and produce structures to sustain anatomical and effect-based imitation capabilities. Our proposed system,
which is based on conditional neural processes, can be conditioned on any desired sensory/motor value at any time-step, and can
generate a complete multi-modal trajectory consistent with the desired conditioning in one-shot by querying the network for all the
sampled time points in parallel avoiding accumulation of prediction errors. Based on simulation experiments with an arm-gripper
robot and an RGB camera, we showed that DMBN could make accurate predictions about any missing modality (camera or joint
angles) given the available ones outperforming recent multimodal variational autoencoder models in terms of long-horizon high-
dimensional trajectory predictions. We further showed that given desired images from different perspectives, i.e. images generated
by the observation of other robots placed on different sides of the table, our system could generate image and joint angle sequences
that correspond to either anatomical or effect based imitation behavior. To achieve this mirror-like behavior our system does not
perform a pixel-based template matching but rather benefits from and relies on the common latent space constructed by using both
joint and image modalities, as shown by additional experiments. Overall, the proposed DMBN architecture not only serves as a
computational model for sustaining mirror neuron-like capabilities, but also stands as a powerful machine learning architecture for
high-dimensional multi-modal temporal data with robust retrieval capabilities operating with partial information in one or multiple
modalities.

1. Introduction

With appropriate and sufficient amount of data, a range of
sensorimotor learning tasks encountered by robots and biolog-
ical systems can be solved by deep learning. However, unlike
the abundance of data for image recognition and language mod-5

eling, robots and biological systems often need to harvest data
themselves by either using self-exploration based learning or
by observing the relevant behaviors of other agents. These
two alternatives are studied in robotics and machine learning
under the general titles of Reinforcement Learning (RL) [1]10

and Learning from Demonstration (LfD)[2]. Although the use
of self-observation during self-executed actions is common for
forming a reward signal in RL, it is not well addressed how to
benefit the agent in a cognitive developmental sense, for exam-
ple, for recognizing actions of others or forming a general im-15

itation capacity. Learning to interact with the environment not
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only empowers the agent with manipulation capability but also
generates information to facilitate the building of action under-
standing and imitation capabilities. This seems to be a strategy
adopted by biological systems, in particular primates, as evi-20

denced by the existence of mirror neurons [3, 4] in the ventral
premotor cortex of those animals, which encode actions in a
multi-modal fashion [5]. For example, there are mirror neurons
that become active when the animal breaks a peanut, observes
an experimenter do the same act or hears the sound of peanut25

cracking [6]. With such a system, sensed actions are mapped to
one’s own motor representation; and thus can bootstrap imita-
tion, by for example, understanding the parts of an observed act
in terms of the existing ‘action vocabulary’ of the animal, which
can be reproduced in sequence yielding novel action imitation30

capability. Although, it is not clear whether mirror neurons play
a role in imitation, as their exact function and mechanism are
far from clear, computational modeling may help produce in-
sights towards understanding them [7]. Therefore, from a sci-
entific and also a technological point of view, it is desirable to35
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Figure 1: General architecture of a Deep Modality Blending Network

develop a neural multi-modal action representation system that
can learn/store actions and recall them from partial informa-
tion that might be transformed as in the case of action observa-
tion from different perspectives. In fact, there exist a range of
computational models related to mirror neurons and their func-40

tion in the literature ([8, 9, 10, 11, 12, 13]) that have leveraged
our understanding by creating hypotheses to be tested. Now,
the time is ripe for a less constrained, end-to-end and more
powerful multi-modal action representation mechanism for ob-
taining better insights. In particular, the existing multi-modal45

action representation schemes based on self-observation either
fall short of providing robust recognition and imitation capabil-
ity or rely on feature engineering.

In this study, we improve the state of the art in multi-modal
action representation by showing for the first time that deep50

learning, when combined with a novel modality blending scheme,
can facilitate feature-engineering-free action recognition and
basic imitation capabilities under perspective changes with only
partial information. Moreover, the modality blending scheme
produces latent representations that can sustain both anatomi-55

cal and effect-based imitation capabilities. We call the devel-
oped multi-modal action representation architecture as a Deep
Modality Blending Network (DMBN).

DMBN connects multiple modalities by blending them as
random mixtures of modality-specific latent representations to60

form a common latent representation for seamless transfer from
one modality to another (see Figure 1). The DMBN architec-
ture follows an encoder-decoder structure where each modality
is summarized by its corresponding encoder network, process-
ing the sensorimotor data into a compact latent representation.65

While learning, not only these latent representations are formed
but they are blended together into a common representation
through stochastic mixture weights. After learning, using the
common representation, each decoder network can predict the
corresponding modality for an arbitrary desired time-step, ef-70

fectively generating outcome predictions as temporal sequences
for all the modalities. In this sense, the common latent layer
in our network encodes representation of the complete multi-
modal trajectories rather than encoding modalities in particular
time steps. This feature sets our system apart from its competi-75

tors [14, 11] and give it a big advantage. To be concrete, our
system can be conditioned on any desired sensory/motor value
at any time-step, and can generate a complete multi-modal tra-
jectory consistent with the desired conditioning in one-shot by
querying the network for all the sampled time points in parallel.80

This one-shot full trajectory decoding ability makes our system
very accurate as it does not suffer from the error accumulation
faced by systems that need to chain next-state predictions in
order to generate full trajectories.

To demonstrate the efficacy of the proposed DMBN archi-85

tecture, we implemented it in a simulated manipulation setup.
In this setup, an object was placed in the middle of a table, and
an arm-gripper robot was set to execute grasp and push actions
on it with different approach directions. The robot observed the
consequences of its actions using an RGB camera from a fixed90

perspective, and learned the generated multi-modal sensory (vi-
sual and proprioceptive) signals as sensory trajectory distribu-
tions through the proposed DMBN architecture. After learning,

• Given desired images at any time point (such as images95

of objects lifted or pushed away), our system can find the
joint trajectories that are required to generate changes in
the environment to observe these images;

• Given joint angles at any time point(s), our system can
generate the sequence of images that are expected to be100

observed during the execution of the action that is con-
sistent with given angles;

• Given desired images from different perspectives, i.e. im-
ages generated by the observation of other robots placed
on different sides of the table, our system can generate105

image and joint angle sequences that correspond to valid
actions of the robot;

• Those valid actions, intriguingly correspond to either anatom-
ical or effect based imitation behavior.

To clarify the last bullet above it would be useful to consider110

an example behavior observed in our simulations. Given an im-
age that shows the snapshot of another robot on the other side
of the table pulling the object to itself, our system can generate
the sequence of images where its own gripper pulls the object
towards itself (anatomical imitation behavior) or pushes the ob-115

ject towards the other side of the table (effect based imitation or
goal-emulation behavior) depending on the visual cues avail-
able to the robot. In our analysis, we show that the prediction
capability of the proposed DMBN system does not simply per-
form a pixel-based template matching but rather benefits from120

and relies on the common latent space constructed by using
both joint and image modalities. In addition to other interesting
results, our experiments clearly show that our system outper-
forms a recent multimodal variational autoencoder model [14]
in reconstructing long-horizon high-dimensional trajectories.125

The outline of this paper is as follows: in Section 2, we
review the related work, in particular LfD systems as DMBN
builds upon one such system and the competing multi-modal
action representations. In Section 3, we describe our proposed
method in detail. We explain our experiment setup in Section130

4 and give experimental results in Section 5. Finally, we give a
conclusion in Section 6.

2. Related Work

Imitation learning, or learning from demonstration (LfD)
[2], has been a popular research topic in robotic learning [15,135

16, 17, 18, 19, 20]. Various LfD methods has been proposed
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based on dynamic systems and statistical modeling [21, 22, 23,
24], where the parameters in the environment can be learned
with Locally Weighted Regression [25, 26, 27] and Locally
Weighted Projection Regression [28]. Gaussian Mixture Mod-140

els [29, 30] and Hidden Markov Models [31, 32, 33, 34] are
also frequently used to learn the motion distributions from mul-
tiple demonstrations. More recently, deep neural networks also
started to be used in imitation learning in order to make it possi-
ble to learn movement primitives from complex high-dimensional145

data [35, 36, 37, 38]. In our earlier work, we proposed Condi-
tional Neural Movement Primitives (CNMPs) [39] as an end-to-
end deep LfD architecture that can learn temporal sensorimotor
distributions of complex manipulation skills. The DMBN archi-
tecture developed in the current study, builds upon CNMPs by150

introducing a novel mechanism for modality blending to learn a
common latent representation that allows cross-modal temporal
prediction with partial information.

Several works studied the emergence of the mirror neuron
system (MNS) in the context of multi-modal sensor fusion. Na-155

gai et al. [40] proposed a computational model for the early
development of the MNS. In this model, the robot cannot make
self-other discrimination in the early stages due to the immature
visual system. As the visual system develops, the robot starts
to discriminate between itself and others, yet, still retains in-160

formation regarding early experiences, producing the MNS as
a by-product. Noda et al. [41] used time-delay neural networks
[42] as autoencoders to fuse multiple modalities and reconstruct
the missing ones given others.

Copete et al. [43] also used a similar autoencoder architec-165

ture in a predictive learning context so to imagine the action of
others. Jung et al. [44] proposed a top-down visual attention
system to address the long-term visual prediction problem. In
this system, the visual stream is divided into dorsal and ven-
tral streams to decompose the difficulty of the problem into two170

sub-problems. These two streams are then merged for the vi-
sual prediction with the help of an external visuospatial memory
which holds long-term visuospatial information. On the other
hand, we provide a more holistic approach where there are only
different submodules for different modalities. Our experiments175

show that DMBNs can output very accurate visual signals con-
ditioned only on a single visual frame without any memory
module. Among these studies, the learning problems consid-
ered in the work of Zambelli et al. [14] is well aligned with
our study. They proposed a multimodal variational autoencoder180

(MVAE) [45, 46] to fuse the sensorimotor information of an
iCub humanoid robot for prediction and control. They showed
that by training MVAE as a denoising autoencoder [47], MVAE
can predict the future sensorimotor states, reconstruct the miss-
ing modalities, and imitate based on human action observation.185

As MVAE is not a recurrent architecture, the temporal informa-
tion should be explicitly stated in the input. To be concrete, in
the training phase, the sensorimotor information at time t and
t + 1 were combined and given as input to the MVAE for recon-
struction. Here, some sensorimotor information at time t + 1190

was randomly masked with -2 (as in a denoising autoencoder)
in order to train the network to reconstruct the future timestep
even if it was partially missing.

In the testing phase for future state predictions, states at
t + 1 were filled with mask values -2. Further steps could195

be predicted by feeding the output of the MVAE to the in-
put. However, the error at one step cascades in the feedback
loop as in RNNs. Therefore, the prediction power decreases
as the trajectory horizon increases. This is not the case in our
proposed model as DMBNs make temporal prediction in one-200

shot without requiring feeding back of the output as input. To
concretely state, our work differs from the previous works in
terms of modality fusion strategy and architecture: (1) we take
a stochastic mixture of modalities to force the formation of a
more regularized representation, and (2) we learn individual205

modalities and their mixture as long range dependencies via
CNPs [48], which allow arbitrary future and past temporal pre-
dictions. These key differences yield not only a more robust
and better performing multi-modal action representation sys-
tem, but also give raise to interesting generalization abilities as210

shown with the experiments presented in the Results section.

3. Method

In this work, we propose Deep Modality Blending Networks
(DMBNs), that can learn and produce sensorimotor signals by
forming and exploiting multi-modal representations acquired in215

a latent space. Assume M = {visual, proprioception, sound,
haptic ...} corresponds to sensorimotor signals from multiple
modalities that an agent collects through self-observation. The
agent interacts with the environment using a variety of actions
to leverage the information produced by the embodied interac-220

tion of the agent with the environment. In the current imple-
mentation, the action and action parameters are sampled from
a predefined action repertoire. During every interaction, the
sensorimotor values are recorded at each time-step. The multi-
sensorimotor interaction data set is defined as I, and the ith in-225

teraction is described as Ii = {(t, S M
t )}Tt=0, where t is time and

S M
t is the sensorimotor state collection for the given time-step.

S M
t consists of multiple sensorimotor data, S M

t = [S visual
t , S joint

t , S sound
t , S haptic

t , ...],
where each member holds the corresponding state values of the
sensorimotor modalities for the time-step t. Figure 2 shows the230

architecture of our model where the modalities in the system
correspond to the visual and proprioceptive domains. These
two domains are chosen specifically in order to show that our
system can learn in an end-to-end fashion with both high (im-
age) and low (joint) dimensional data and make more accurate235

target predictions on a long horizon compared to the sequential
prediction models. In theory, all types of sensorimotor data can
be included in the system with our formulation.

The aim of DMBN is to predict a conditional output dis-
tribution for a target query given a desired set of observation240

samples. At the beginning of each training iteration, an inter-
action Id is selected randomly from the data set I. From this
selected interaction, n data points of (t, S M

t ), are randomly sam-
pled as observations. Here, n is a changing number for each
training iteration that is bounded by [1, obsmax] where obsmax is245

a hyper-parameter that decides the maximum number of sam-
pled observations in the training. We define this sampled ob-
servation set as OM = {(ti, S M

ti )}obsmax
i where (ti, S M

ti ) ∈ Id. On
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Figure 2: Proposed framework for given visual and joint modalities. Image and joint observations are turned into their latent representations separately to be used
to predict the image and joint positions given at another target time step.

the left side of the Figure 2.(I), example sampled observations
Oimage and O joint are shown for the image and the joint domains.250

Besides OM , a target tuple (ttarget, S M
ttarget

) is also sampled from
the same selected interaction Id. The purpose of a training iter-
ation is to learn distributions on ttarget for all modalities in the
system, based on the observation set OM .

Our aim is to merge the observations of all the modality sig-
nals in a single latent space to allow information sharing for a
higher quality prediction. In order to achieve this, the obser-
vations of each modality, Om, are first turned into their latent
representations Rm

i . For every modality m and every observa-
tion, latent states are calculated by the following equation:

Rm
i = Em((ti, S m

ti ) | θm) (ti, S m
ti ) ∈ Om,m ∈ M (1)

where Em is a deep encoder for the modality m with weights
θm, and Rm

i is the latent states of its ith observation. Figure 2.(I)
shows the encoded representations, Rimage

i and R joint
i , for each

observation. After generating these representations, an aver-
aged representation of each modality is calculated by:

Rm =
1
n

n∑
i

Rm
i m ∈ M (2)

where n is the size of the observations of this training iteration.
Rimage and R joint in Figure 2(II) hold general knowledge about
their modalities, and our aim is to use these representations in

a shared latent space to allow information sharing between all
the modalities. To achieve that, a multi-modal general repre-
sentation R that integrates all the modalities is constructed by
calculating a normalized weighted average:

R =

∑M
m pmRmwm∑M

m pmwm
(3)

where wM = [wimage,w joint,wm, ...] is a vector representing the
weight or availability of the individual modalities with 0 ≤
wM ≤ 1 and wM , 0, which could be used to model cases where
one modality is more reliable than the other. On the other hand,
modality blending during training is achieved through the ran-
dom variables 0 ≤ pm ≤ 1 that is sampled at every iteration,
and obey the constraint

∑
pm = 1. Note that to avoid

∑M
m pmwm

ever becoming zero (See Eq 3), we may require pm > 0; but
this is not an issue in practice. This follows the same intu-
ition with dropout [49]; randomly dropping modalities forces
the model to learn compact representations that can compensate
for missing information. Figure 2.(III) shows this process as a
two-modality setup where wimage = w joint = 0.5 and pimage = p
and p joint = 1 − p where p is sampled uniformly from [0,1].
Note that the dimension of each Rm should be the same in or-
der to perform summation operation between vectors, so in the
first place, all the encoders must be designed to produce the la-
tent states with the same dimensions. Once all observations are
merged into one general representation, this information can be
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used to infer target distributions on ttarget for all the modalities
as:

(µm
ttarget

, σm
ttarget

) = Qm((R, ttarget) | φm) m ∈ M (4)

where Qm is a deep decoder network with weights φm that pro-
duces a distribution that consists of a mean µm

ttarget
and variance

σm
ttarget

for the modality m. Figure 2.(IV) shows the decoders,

Qimage and Q joint, and predicted distributions, (µimage
ttarget

, σ
image
ttarget

)

and (µ joint
ttarget

, σ
joint
ttarget

), for two domains. The learning objective of
our framework is to construct better distributions according to
the given observations as in [48] and [39], so the loss term is
defined as:

L = −

M∑
m

logP(S m
ttarget
| µm

ttarget
, σm

ttarget
) (5)

where S m
ttarget
∈ S M

ttarget
is the target sensorimotor value for modal-255

ity m at time ttarget.
After training, the system can be requested to make predic-

tions for all the modalities and for all the time-steps by fixing
pM = 1/M and assigning OM as novel observations. By observ-
ing the sensorimotor state at any time-step, any other time point260

before and after can be queried and predicted using our frame-
work. According to the situation, if a sensorimotor modality
does not seem to provide reliable signals, the weight given to
that modality can be decreased by configuring availability vec-
tor w. Note that, the system can even predict missing modalities265

if the corresponding wm is set to zero because of a lack of the
modality. Our framework can use the shared latent space for
multi-modal predictions. This also enables our framework to
imitate other agents by observing their actions with, for exam-
ple, vision and sound, and producing the agent own behaviour270

by predicting the corresponding motor signals.

4. Experiment Setup

Figure 3: (Left) Experiment setup with vision sensor , UR5, and the object at
the middle of the table. (Right) Example grasping and pushing actions recorded
via the vision sensor.

To demonstrate the capabilities of our system, we designed
an experiment where the actions of the robot can be predicted
from the visual and proprioceptual observations at the begin-275

ning of the movement execution. A simulated environment was
built using CoppeliaSim [50]. The setup consisted of a UR5
robot equipped with a three-finger gripper, a vision sensor, and
an object on a table to be manipulated by the robot (Fig. 3
left). The action repertoire of the robot was composed of pa-280

rameterized push and grasp actions that allow reaching to the

object from all directions, and the data collection protocol for
each action execution (interaction) was as follows. At the be-
ginning of each interaction, the robot initialized its wide-open
hand at an initial position, and an object appeared in the middle285

of the table (Fig. 3 right). If the selected action was push, a ran-
dom pushing angle was sampled and the robot pushed the ob-
ject from this angle to a predetermined fixed distance of 30cm
while keeping the hand open. If the selected action was grasp,
a random grasping angle was sampled and the robot started to290

close its hand while approaching to the object so as to grasp
it and lift it to a fixed height over the table (30cm). The col-
lected data consisted of two modalities that are proprioception
and vision. The proprioceptive signals were composed of seven
joint angles of the robot (6 joints of the UR5 robot and 1 hand295

opening joint), whereas the visual signals were 128 x 128 x 3
RGB images. Visual signals were collected via the vision sen-
sor that was placed to the point of view of the robot (see Figure
3). In the end, 50 successful push and grasp interactions (100
in total) were collected using the simulator. The interactions300

were separated into train and test set with 80% and 20% ratios
respectively.

5. Experimental Results

We conducted a set of experiments to test the capabilities of
DMBN from different aspects. First, in Section 5.1, we verify305

the prediction capabilities of DMBN by generating complete
image and joint trajectories conditioned only on single images.
In Section 5.2, the performance of DMBN is compared with
MVAE and multi-step errors made by these models are ana-
lyzed in Section 5.3. In Section 5.4, we show how the latent310

space of two modalities indeed blend with each other. In Sec-
tion 5.5, we analyze the behavior of our model when condi-
tioned with images from different perspective and whether it
can serve as a mirror neuron system in replicating observations
from different agents. We analyze whether such generalization315

is due to the inductive bias of the model by making two differ-
ent ablation studies in Sections 5.6 and 5.7, together which lend
support to the the idea that mirror neuron formation can be me-
diated by self-observation and modality blending with DMBN.
Lastly, we test the generalization of the model by conditioning320

on out-of-distribution samples and include the results in Ap-
pendix A.

5.1. Long-term Prediction with Vision only

In this experiment, we verify whether our system can pro-
duce visual sequences and the corresponding joint values given325

a single image as an input. Note that since we take an average
of latent vectors for conditioned points, we might as well give
multiple images, instead of a single one, to get a more accurate
prediction (see Equation 2). Here, to demonstrate the capabili-
ties of our system even in such a scenario where the information330

is minimum, the system is fed with a single visual observation
which is obtained just before the robot interacts with the ob-
ject. The availability vector is set to one for visual modality
and to zero for proprioceptive modality since the observation
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Figure 4: (I) Images that are used as observations. (II) DMBN visual predictions for the given time-steps. (III) Ground truth images for the given time-steps. (IV)
DMBN 7D joint predictions for the whole action

only includes visual information. Then, the system is requested335

to produce visual and motor signals from the beginning to the
end of the movement.

Figure 4 shows two examples of pushing and grasping ac-
tions at the left and the right of the figure respectively. Figure
4.(I) shows the obtained images that are used as observations340

from the test set. Figure 4.(II-III) shows the predicted images
together with the ground truth at the corresponding time-steps.
It can be seen that exploiting the position, orientation, and hand
state of the robot extracted from the observed image, our system
could successfully predict the sequences of visual and propri-345

oceptive signals from start to finish, which are highly accurate
compared to the ground truth values. It is notable that despite
the fact that there was no proprioceptive observation in these
two examples, our model could make accurate joint predictions
from start to the end of the movement by just having access to350

visual modality (see Figure 4.(IV)). These results indicate that
our model can use the representation encoded from an available
modality to predict the signals of the other missing modalities.
A more detailed quantitative analysis about cross-modality pre-
dictions is presented in the next section.355

5.2. Missing Modality Prediction as a Function of Training Set
Size

Figure 5: The prediction errors on the test set for different modality input-output
pairs with the increasing size of the training data (x-axis).

In this section, we test whether DMBN can indeed per-
form well when there are some missing modalities. In this
experiment, we used the same network in the previous exper-360

iment which is trained by using either visual or proprioceptive

modalities. During the test phase, we set the availability of one
of the two modalities to zero. We tested whether our system
can still predict missing modalities.

We compared our method with MVAE [14] as it can han-365

dle missing modalities. We made several modifications to the
original MVAE architecture to make a fair comparison. First,
we added convolutional layers for the visual input pipeline. All
layers in the encoder and the decoder are exactly the same as
in DMBN. Therefore, the number of parameters is the same370

except that MVAE uses an extra fully-connected layer to com-
bine different encoder outputs. This extra layer is not needed
in DMBN since the latent representation is shared and acquired
via normalized weighted summation. Second, we remove the
standard deviation prediction from the decoder as it gave bet-375

ter results in our preliminary experiments. We did not use the
KL divergence term in the loss as in [14]. Third, we randomly
mask the sensorimotor data at time t and predict the data at
t + 1, in addition to other masking schemes reported in [14].
This additional masking scheme enables us to make full trajec-380

tory predictions (both forward and backward prediction) given
the observation before contact. Our implementation1 is based
on [14] and their code repository2.

We report our results in Figure 5 where the prediction accu-
racies with increasing number of training trajectories are shown.385

For the two modalities in our experimental setup, we tested
four different combinations of modality masking: predicting
visual states when either proprioceptive modality (Figure 5.a)
or the visual modality (Figure 5.c) is missing, and predicting
joint states when either proprioceptive modality (Figure 5.b) or390

the visual modality (Figure 5.d) is missing. We condition both
DMBN and MVAE models with the observations taken from
the same time-step that is right before the robot interacts with
the object. Both systems predict complete visual and joint tra-
jectories starting from t = 0 to t = T . Since DMBN is able395

1https://github.com/alper111/multimodal-vae
2https://github.com/ImperialCollegeLondon/Zambelli2019_

RAS_multimodal_VAE
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to learn from few data, the error and its variation drop quickly
even with the small training size, and it improves the accuracy
while the data size is increased. For MVAE, the error slightly
drops during the data size increase, yet, still far from DMBN.
One reason for the error of MVAE is that it feeds the predic-400

tions back to itself as input, thus cascades the error in the long
horizon. We investigate this phenomenon in the next section in
detail.

5.3. Analysis of Long Horizon Predictions

Figure 6: Multi-step prediction results. MVAE errors increase with the predic-
tion steps due to error accumulation. However, our model preserves the error
at the same level for increasing prediction steps since it predicts every timestep
independent from each other

In this section, we compared the capacity of DMBN on the405

long horizon predictions with the MVAE method. Both models
are trained using the same two modalities in the same way as in
the previous section.

In [14], MVAE is used for one step ahead predictions to
control the iCub humanoid robot in a closed loop. To make410

predictions about further time-steps, the model can be fed with
its output from the previous time-step. They showed that when
trained with sinusoidal data, the prediction accuracy remains
the same for about 50 time-steps, and then starts to degrade. In
this experiment, we compared the two methods using the data415

that is collected during the self-exploration which is more com-
plex and high-dimensional. In contrast to MVAE, DMBN does
not need to feed its output back to itself as input to make fur-
ther predictions since we can explicitly query any time-step in-
dependently and make predictions on the long horizon directly.420

We analyze the error versus the prediction step for two meth-
ods in Figure 6. The error of MVAE increases as the prediction
step increases since the error is fed back in the input for future
time-step predictions. However, the error of DMBN remains
around the same because the model does not have a feedback425

loop to connect an erroneously computed output to its input,
and make predictions for every time-step independently just by
looking to the observations.

5.4. Multimodal latent space visualization

Figure 7: t-SNE visualization of latent space during training. Blue points are
visual encodings, and red points are joint encodings.

In this experiment, multi-modal latent space is visualized430

and analyzed. As mentioned in the previous section, we trained3

the system with the two modalities that are visual and proprioceptive.
For visualization purposes, the high-dimensional representation
space (128 sized vector) is reduced to two dimensions using t-
SNE [51] method at different stages of the training. Figure 7435

shows the t-SNE visualization of the multimodal latent space
at 0, 7k, 25k, 75k, and 150k learning steps from left to right.
Blue and red points indicate the samples from the visual and
proprioceptive modalities, respectively. Figure 7 shows that al-
though the different modalities are clustered and separated from440

each other at the beginning of the training (0 and 7k learn-
ing steps), they start to share the representations between each
other after a while (25k learning steps), and turn into match-
ing/overlapping representations in the later stages of the train-
ing (75k and 150k learning steps). Paired blue and red points445

in the overlapping representation space are analyzed and it is
found that each paired blue-red point corresponds to two modal-
ities recorded from the same state of the environment. These
results suggest that our system can effectively learn multiple
modalities in a common latent space in a way that every sen-450

sorimotor modality recorded from the same state of the envi-
ronment ends up turning into the nearly same representation in
the latent space. This allows our system to predict the miss-
ing modalities by using the representations produced by other
available modalities, which was shown in the Section 5.2.455

5.5. Imagining Own Actions by Observing Others: Emergence
of Mirror Neuron System Behaviour

Figure 8: Examples of DMBN effect imitation behavior. First row: Observing
the other agent just before it pushes away the object. Second row: Observing
the other agent just before it grasps the object.

In this experiment, we tested our system to see if it can gen-
erate own sensorimotor data by observing another agent per-
form an action. In order to do that, an agent was placed on the460

different sides of the table and their performed actions are ob-
served via our agent’s visual sensor. Note that in the training
data, interactions were only performed and recorded just by our
agent, so observing other agents in the test time is a novel infor-
mation which is completely outside of our training set. Since465

we were using only visual data as the observation, availability
vector is set to one for visual modality and to zero for proprio-
ceptive modality. Because of the fact that the observations are
on another agent but the predictions are made for our agent, this
prediction process can be considered as the imagination of the470

action of another agent for the self.

3Training details about the network can be found in Appendix B.
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Figure 9: Examples of DMBN egocentric imitation behavior. First row: Emer-
gence of mirror neuron behaviour where the agent observes the other agent pull
the object towards itself. Second row: The agent observes a hand without the
body. Third row: The agent observes a hand and a base without the arm.

Figure 8 shows the prediction results of our model in two
different pushing and grasping scenarios where the observations
are shown in Figure 8(a). In the first scenario, the other agent
was placed on the opposite side of the table, and in the second475

scenario, the other agent was placed on the left side of the table.
Figure 8(b) shows the visual signals during the other agent per-
formed its action, and Figure 8(c) shows the full trajectory pre-
diction of our system as it imagines the visual signals for itself.
As it can be seen in the predictions, our agent is able to generate480

visual trajectories from its own perspective that matches the ap-
proaching angle and the action type in the observation, hence,
imagining an action that would be an effect-based imitation of
the observed action

However, when we further analyzed our model, we saw that485

DMBN behaves differently in some specific scenarios. Surpris-
ingly, when the other agent pulls the object towards itself , our
agent imagines an action that egocentrically imitates the ob-
served action (Figure 9, first row) and generates motor signals
that would also pull the object towards itself rather than creat-490

ing the effect on the object as shown in the Figure 8. We can say
that, in this particular action observation case, an emergent mir-
ror neuron property was exhibited by our DMBN. Interestingly
this behavior ‘switches’ so that the action imagined corresponds
to effect-based imitation (i.e. emulation) of the observed action495

when the effector is removed from the interaction (Figure 9,
second row). Finally, when the robot is partially revealed by
disclosing the base of the robot, the system starts to understand
the observed action again as bringing the object toward one’s
self (Figure 9, third row), thereby showing a mirror neuron re-500

sponse as in the first row of Figure 9.
These results show that when conditioned with the visual

signals of other agents, DMBN has potential to produce out-
put signals similar to that of a mirror neuron system. However,
signals generated can correspond to either effect-based or ego-505

centric imitation depending on the specific visual signals avail-
able from the other agent and the environment. Therefore, it

is viable to modulate the behavior of DMBNs via other cog-
nitive mechanisms, e.g. attention, to purposefully control the
operation of the model.510

5.6. Template Matching According to Pixel and Latent Space
Distances

Figure 10: Closest Pixel: Pixel Space Distance; Closes Representation: Latent
Space Distance

In this experiment, we aimed to see whether the mirror neu-
ron emergence in our system was due to the rich representations
constructed in the latent space during the learning, or it could515

be simply explained by a straightforward image based template
matching. For this, first, two test cases in which true mirror
response (i.e. action representation that would yield egocen-
tric imitation) was observed was selected. Figure 10.(a) shows
these two observation cases where the agents are placed on the520

opposite and the left side of the table, respectively. For each
test case, the closest image in the training set that gives the
minimum average pixel error, and the corresponding image of
the closest representation that gives the minimum MSE error in
the representation latent space are found and compared. Figure525

10.(b) shows the corresponding closest pixel and representation
images for each case respectively. Figure 10.(c) also shows the
corresponding full trajectory interactions of the found results
from the training set.

Results of the both examples show that the corresponding530

interactions of the closest pixel images do not exhibit true mir-
ror response (i.e. the predicted signals would not yield an ego-
centric imitation when executed on the robot). On the other
hand, the corresponding interactions of the closest latent space
representations show true mirror response. These results sug-535

gest that the output signals that DMBN produces are not based
on a simple image based error minimization but on rich rep-
resentations that are learned during the multi-modal training
with modality blending. The contribution of the deep modality
blending to the mirror neuron emergence is further inspected in540

detail in the next section.

8



True Mirror Response Success Fail
Case 1 10 0Image + Joint Model
Case 2 10 0
Case 1 6 4Only Image Model
Case 2 4 6

Table 1: Test results of the two models in ten different training sessions with
two action observation cases (see Figure 10) of demonstrating agent positioned
across (Case 1) and the left side of the agent (Case 2) . Success: The model
produced a signal output that corresponds to true mirror response; i.e. the ex-
ecution of the action based on those signals would yield egocentric imitation.
Fail: the model produced disturbed image signals

5.7. Analysis of the Contribution of Multimodal Learning to
Mirror Neuron Emergence

In this experiment, we tested if deep modality blending con-
tributes to the mirror neuron emergence in our system. To do545

that, a model that only uses visual modality was trained next
to our model which was trained by using both visual and pro-
prioceptive modalities. In order to prevent the training biases
that can occur because of the initial network weights or sam-
pling seeds, both models were trained 10 times with different550

different random initializations. After the training, both of the
models were tested with two test cases and checked whether the
networks produce output signals that correspond to mirror neu-
ron emergence. The two test cases used in this experiment were
the same examples as in the Experiment 5.6 where the demon-555

strating agent were placed at the opposite and the left side of
the table (see Figure 10).

Figure 11: Example failing scenarios for the only image model. The images
are disturbed and the robot arm is disappearing.

Table 1 shows the results of the two models in ten different
training initializations with two test cases. Results indicate that
the model that uses deep modality blending (the model with Im-560

age + Joint) produces coherent images that corresponds to ego-
centric imitation in every test case where the model that uses
only one modality (Only Image Model) produces disturbed im-
ages on the ten test cases out of twenty. Figure 11 shows some
example fail cases for the only image model where the image565

is disturbed or the arm of the robot is disappeared These re-
sults suggest that using deep modality blending with visual and
proprioceptive modalities contribute to the emergence of mirror
neuron behavior.

6. Conclusion570

In this work, we proposed Deep Multi-modal Blending Net-
work (DMBN) as a multi-modal action representation system
that learns the sensorimotor signals corresponding to the ac-
tions, in a robust latent representation allowing temporal cross-
modal predictions with limited information. DMBNs can gen-575

erate complete signal trajectories in any desired modality even

with zero information on the desired modality by using other
available modalities. The performance of the network surpasses
the available multi-modal learning systems due to long-range
one-shot prediction capability and its novel stochastic modality580

blending mechanism.
DMBNs build powerful internal representations that allow

surprisingly dynamic extrapolation properties, making it a strong
contender as a feature-engineering-free Mirror Neuron System
model. To be specif, after learning proprioception and visual585

signals based on self action observations, when tested with dif-
ferent perspective action observations, it successfully generates
valid signals that represents its own actions. Depending on
the visual setting, the network either acts a true mirror system
matching an observed act to its own repertoire in an egocentric590

way, or acts as an effect-based action matching system. Thus,
the network has potential to sustain egocentric and effect-based
action recognition and imitation capabilities when envisioned
in the cognitive system of an artificial or biological agent.

In this vein, future work should focus on developing biolog-595

ically plausible and developmentally realistic end-to-end mirror
neuron systems that learn along with sensorimotor skill acqui-
sition. In the current study, we used a fixed action repertoire
to systematically study the properties of DMBNs; yet in a de-
veloping artificial or biological cognitive agent, mirror neuron600

formation and action learning should go in parallel creating po-
tentially non-trivial interactions worth studying. Another direc-
tion that should be pursued is to use the basic imitation capac-
ity acquired by the model, to construct novel imitation capacity,
where the parts of an observed novel act can be understood in605

terms of and matched to the existing action repertoire of the
agent with the help of DMBN implementing the developing
mirror neuron system. We believe that work around these di-
rections will not only stimulate computational study of mirror
neurons as a full end-to-end system but also form a framework610

for lifelong sensorimotor learning for social robots.
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Appendix A. Generalization of the System to the Novel En-
vironmental Configurations

Figure A.12: Generalization performance of the proposed system in two differ-
ent configurations. Left side: the color of the object is blue. Right side: the size
of the object is bigger than the original one.

In this experiment, we tested our system with different novel
environmental configurations that have different properties than785

the training set. Figure A.12 shows the generalization perfor-
mances of the two different configurations. Left side of the fig-
ure shows a scenario in which the color of the object was differ-
ent from the object in the training data, and the right side shows
a configuration where the size of the object was changed. De-790

spite not seeing a big or blue object in the training, our system
could successfully predict the correct approaching angle and the
action using the observed image in both configurations. It can
be seen that the color and the size of the objects are predicted
as in the configuration in the training images. This is expected795

since the only configuration for object in the training scene was
yellow and small. Even though the object in the observed im-
age was not the same with the training object, our system could
use the knowledge that is learned in the training data to predict
a correct output in its own configurations that satisfies the given800

observation.

Appendix B. Network Architecture and Training Details of
DMBN

In this section, the network architecture and training config-
urations of DMBN are shown. Table B.2 and Table B.3 show805

the image and joint encoder architectures respectively. Table
B.4 and Table B.5 show the image and joint decoder architec-
tures respectively. DMBN is trained with Adam optimizer [52]
for one million iterations with a batch size of one and a learning
rate of 0.0001. We set obsmax to 5.810

Appendix C. Network Architecture and Training Details
of MVAE

In this section, the network architecture and training con-
figurations of MVAE are shown. Table C.6 and C.7 show the
image and the joint encoder architectures respectively. Table815

Layer Input size Output size
Conv3x3 + ReLU + MaxPool2x2 (4, 128, 128) (32, 64, 64)
Conv3x3 + ReLU + MaxPool2x2 (32, 64, 64) (64, 32, 32)
Conv3x3 + ReLU + MaxPool2x2 (64, 32, 32) (64, 16, 16)
Conv3x3 + ReLU + MaxPool2x2 (64, 16, 16) (128, 8, 8)
Conv3x3 + ReLU + MaxPool2x2 (128, 8, 8) (128, 4, 4)
Conv3x3 + ReLU + MaxPool2x2 (128, 4, 4) (256, 2, 2)

Flatten (256,2,2) 1024
Dense 1024 128

Multiply (Image Coefficient) 128 * 128 128

Table B.2: DMBN Image Encoder

Layer Input size Output size
Dense + ReLU 8 32
Dense + ReLU 32 64
Dense + ReLU 64 64
Dense + ReLU 64 128
Dense + ReLU 128 128
Dense + ReLU 128 256
Dense + ReLU 256 128

Multiply (Joint Coefficient) 128 * 128 128

Table B.3: DMBN Joint Encoder

C.8 shows the shared encoder-decoder architecture. Table C.9
and C.10 show the image and joint decoder architectures re-
spectively. MVAE is trained with Adam optimizer [52] for 200
epochs with a batch size of 128 and a learning rate of 0.001.

Appendix D. t-SNE Visualization of the Latent Space820

In this section, the detailed version of the latent space is
investigated. Figure D.13 shows the encodings of all of the
training trajectories in the latent space.
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Layer Input size Output size
Add (Image + Joint Representations) 128 + 128 128

Concatenate (Target Layer) 128 129
Dense + ReLU 129 1024

Reshape 1024 (256, 2, 2)
Conv3x3 + ReLU + UpSample2x2 (256, 2, 2) (256, 4, 4)
Conv3x3 + ReLU + UpSample2x2 (256, 4, 4) (128, 8, 8)
Conv3x3 + ReLU + UpSample2x2 (128, 8, 8) (128, 16, 16)
Conv3x3 + ReLU + UpSample2x2 (128, 16, 16) (64, 32, 32)
Conv3x3 + ReLU + UpSample2x2 (64, 32, 32) (64, 64, 64)
Conv3x3 + ReLU + UpSample2x2 (64, 64, 64) (32, 128, 128)

Conv3x3 + ReLU (32, 128, 128) (16, 128, 128)
Conv3x3 + ReLU (16, 128, 128) (8, 128, 128)

Conv3x3 + Sigmoid (8, 128, 128) (3, 128, 128)

Table B.4: DMBN Image Decoder

Layer Input size Output size
Add (Image + Joint Representations) 128 + 128 128

Concatenate (Target Layer) 128 129
Dense + ReLU 129 1024
Dense + ReLU 1024 512
Dense + ReLU 512 216
Dense + ReLU 216 128
Dense + ReLU 128 32

Dense 32 14

Table B.5: DMBN Joint Decoder

Layer Input size Output size
Conv3x3 + ReLU + MaxPool2x2 (6, 128, 128) (32, 64, 64)
Conv3x3 + ReLU + MaxPool2x2 (32, 64, 64) (64, 32, 32)
Conv3x3 + ReLU + MaxPool2x2 (64, 32, 32) (64, 16, 16)
Conv3x3 + ReLU + MaxPool2x2 (64, 16, 16) (128, 8, 8)
Conv3x3 + ReLU + MaxPool2x2 (128, 8, 8) (128, 4, 4)
Conv3x3 + ReLU + MaxPool2x2 (128, 4, 4) (256, 2, 2)

Flatten (256, 2, 2) 1024
Dense + ReLU 1024 128

Table C.6: MVAE Image encoder

Layer Input units Output units
Dense+ReLU 14 32
Dense+ReLU 32 64
Dense+ReLU 64 64
Dense+ReLU 64 128
Dense+ReLU 128 128
Dense+ReLU 128 256
Dense+ReLU 256 128

Table C.7: MVAE Joint encoder

Layer Input units Output units
Encoder

Concatenate (Image+Joint) 128, 128 256
Dense + Tanh 256 128 mean, 128 std

Decoder
Dense+ReLU 128 256

Slice (for image and joint dec.) 256 128 , 128

Table C.8: MVAE shared encoder-decoder. The activation after the first decoder
layer is sliced into two, and each slice is given to a different decoder.

Layer Input size Output size
Dense + ReLU 128 1024

Reshape 1024 (256, 2, 2)
Conv3x3 + ReLU + UpSample2x2 (256, 2, 2) (256, 4, 4)
Conv3x3 + ReLU + UpSample2x2 (256, 4, 4) (128, 8, 8)
Conv3x3 + ReLU + UpSample2x2 (128, 8, 8) (128, 16, 16)
Conv3x3 + ReLU + UpSample2x2 (128, 16, 16) (64, 32, 32)
Conv3x3 + ReLU + UpSample2x2 (64, 32, 32) (64, 64, 64)
Conv3x3 + ReLU + UpSample2x2 (64, 64, 64) (32, 128, 128)

Conv3x3 + ReLU (32, 128, 128) (16, 128, 128)
Conv3x3 + ReLU (16, 128, 128) (12, 128, 128)

Conv3x3 (12, 128, 128) (12, 128, 128)

Table C.9: MVAE Image Decoder. The last activation is sliced into two (6, 128,
128) shaped tensors for mean and std. See the original implementation [14] for
further details.

Layer Input units Output units
Dense+ReLU 128 256
Dense+ReLU 256 128
Dense+ReLU 128 128
Dense+ReLU 128 64
Dense+ReLU 64 64
Dense+ReLU 64 32

Dense 32 28

Table C.10: MVAE Joint Decoder. The last activation is sliced into two for
mean and std.
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Figure D.13: t-SNE [51] visualization of the encoder output. Here, green and red represents ‘move’ and ‘grasp’ actions, respectively. The initial and the final point
of a trajectory is represented with a triangle and a star, respectively.
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