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SUMMARY
Parental scaffolding is an important mechanism that speeds up infant sensorimotor development.
Infants pay stronger attention to the features of the objects highlighted by parents, and their
manipulation skills develop earlier than they would in isolation due to caregivers’ support. Parents
are known to make modifications in infant-directed actions, which are often called “motionese”.7

The features that might be associated with motionese are amplification, repetition and simplification
in caregivers’ movements, which are often accompanied by increased social signalling. In this paper,
we extend our previously developed affordances learning framework to enable our hand-arm robot
equipped with a range camera to benefit from parental scaffolding and motionese. We first present
our results on how parental scaffolding can be used to guide the robot learning and to modify its crude
action execution to speed up the learning of complex skills. For this purpose, an interactive human
caregiver-infant scenario was realized with our robotic setup. This setup allowed the caregiver’s
modification of the ongoing reach and grasp movement of the robot via physical interaction. This
enabled the caregiver to make the robot grasp the target object, which in turn could be used by the
robot to learn the grasping skill. In addition to this, we also show how parental scaffolding can be
used in speeding up imitation learning. We present the details of our work that takes the robot beyond
simple goal-level imitation, making it a better imitator with the help of motionese.

KEYWORDS: Developmental robotics; Affordance; Imitation; Parental scaffolding; Motionese.

1. Introduction
Infants, pre- and post-natal, are in constant interaction with their environment for developing
sensorimotor skills. The random looking hand arm movements of a newborn serve not only to
strengthen his skeleto-muscle system but also to adapt his sensorimotor control. Infants, as young as
two weeks old try to create opportunities to enhance their sensorimotor development, for example by
keeping their hands in view despite opposing load forces.51 They realize very early on that they can
manipulate their own body as well as their caregivers: a cry brings more care and food, a smile induces
a reciprocal smile and so on. In turn, the signals an infant displays in response to the stimulation from
the caregiver create a non-trivial infant-caregiver dynamics. This takes the form of so called ‘parental
scaffolding’ when the infant starts to learn more complex movement skills.

In developmental psychology, the support given by a caregiver to speed up the skill and knowledge
acquisition of an infant or a child is generally referred to as scaffolding.4 For example, a caregiver
attracts and maintains a child’s attention as well as shapes the environment in order to ease a task
to teach to the child. For some skills, scaffolding may include physical interaction such as guidance
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Fig. 1. Snapshots from adult-directed (upper panel) and infant-directed (lower panel) demonstrations of a
stacking task. Compared to adult-directed demonstration, infant-directed one took longer time (14 s) and
included a number of motionese strategies such as inserting pauses and directing attention to important
features.
http://cnr.ams.eng.osaka-u.ac.jp/ yukie/videos-en.html

from the caregiver to position and orient the child, or to guide the hands and arms to help the child
complete a manual task. This guidance is usually performed in conjunction with various signals that
highlight the important features or subgoals of a task. In this context, scaffolding can be seen as the
process of providing feedback or reinforcement to the child.52

Assisted imitation experiments by Zukow-Goldring and Arbib53 show that caregivers interfere
with an ongoing task execution of an infant only at parts where the infant fails. For example in the
tasks of concatenating objects or orange peeling, caregivers initially demonstrate the goal, while
trying to direct the attention of the child towards the task-relevant features, and then ‘embody’ the
child to co-achieve the goal. Throughout this process, caregivers allow the infant to utilize the full
sensorimotor experience for learning. The infant, in some sense, learns how it ‘feels’ to execute and
complete the task through his/her own proprioceptive, vibrotactile, visual and auditory system. The
communication between a caregiver and a child becomes more multimodal and explanatory rather
than being simply regulatory especially when the child is on a ‘mission’ to achieve a task.43

In the course of development, infants learn that caregivers would respond to their request for help,
and become active seekers of scaffolding opportunities for learning. By the maturation of the ‘joint
attention’ ability, which emerges towards the end of the first postnatal year, the infants use more and
more of communicative signals,18 which facilitate, amongst other things, support from caregivers. In
general, scaffolding appears to be a critical mechanism for human skill development, because it is
known that infants can exhibit certain skills in game-contexts with their mothers long before they can
display the skills alone in controlled settings.21

Caregivers modify their movement patterns when teaching a task to an infant, much the same way
as when they make changes in their vocal production to accommodate the infant auditory system.
As the latter is commonly called ‘motherese’, Brand et al.7 analogously coined the term ‘motionese’
to describe the higher interactiveness, enthusiasm, proximity, range of motion, repetitiveness and
simplicity that may be observed when teaching an infant a new task. Reinforcing this notion, Nagai and
Rohlfing28 found that when interacting with infants, as opposed to other adults, parents instinctively
try to employ a number of strategies in order to increase the saliency of the objects and their initial
and final states (see Fig. 1). These strategies include suppressing their own body movements before
starting to execute the task, and generating additional movements on the object, such as tapping it on
the table. The resulting behavior is qualitatively different from adult-adult interaction in observable
parameters, such as the pace or the smoothness of the movement.37 It is shown that infants also
benefit from this behavior. Koterba and Overson23 showed that infants exposed to a higher repetition
of demonstration exhibit longer bangs and shakes of objects whereas infants exposed to a lower
repetition spent more time for turning and rotating objects.

Nagai and Rohlfing31 developed a bottom-up architecture of visual saliency that can be used in an
infant like learning robot. In this architecture, similar to an infant, the robot tends to find the salient
regions in caregiver’s actions, when they are highlighted by instinctive parental strategies. Moreover,
the saliency preference of the robot also motivates humans to use motionese as if they were interacting
with a human infant, thereby completing the loop.29 Due to the limited attention mechanism of the
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robot, human subjects tried to teach the task (cup-stacking) by approaching towards the robot and
introducing the object in the proximity of the robot. In general, subjects amplified their movements
and made pauses as if to give the robot a chance to understand the scene. Such delimiting pauses and
exaggerations are also observed in infant-directed speech,14 and infant-directed sign language.25

Using human-robot interaction appears to be a fruitful path for robot skill synthesis, and as such
it has been employed in a wide variety of contexts with different flavors. On one extreme, the
human simply provides a ‘demonstration’ which is adapted to the robot by manual work.41 In the
other extreme, the human operator is considered as part of the robot control system and human
sensorimotor learning capacity is exploited to synthesize the robot behaviors.2, 26 Direct teaching, or
kinesthetic teaching9, 24, 38 somewhat takes a path in between and requires the human to specify the
motion of the robot by physically guiding it from the start to the end of the task.

In the context of manipulation, parental scaffolding may seem similar to kinesthetic teaching;
yet there are several important differences. In kinesthetic teaching, the robot is usually passive
and guided by the human continuously. In scaffolding, the caregiver intermittently interferes and
corrects an ongoing execution rather than completely specifying it. Parental scaffolding has been
adopted in several forms for robotics studies with the goal of, for example, better communication
between humans and robots.8 It is proposed that a well-founded paradigm of scaffolding will
provide the basis for lifelong robot development ‘at home’:39 For instance, domestic service robots
can keep learning new tasks from their owners, instead of being restricted to manually designed
skills.

In teaching by demonstration or imitation learning studies, a recurring theme is that the robot
has no way to infer what to imitate unless specified by the designer. In particular, in goal-oriented
tasks where any means to achieve the goal is acceptable, the robot has to decide whether to copy the
motion or reproduce the observed effect. In means-oriented tasks, the motion itself is equally or more
important as the real goal may not be the physical final state of the environment, but the movement
pattern itself.6, 30, 33 This is also a problem faced by human infants until at least age of 18 months,10, 17

where the parents often provide help in the form of scaffolding. In particular, they signal what to
imitate by highlighting important features or parts of the movement.31 For example, in a goal-oriented
task, initial and final states along with the important sub-goals are emphasized by inserting pauses in
the movement sequence. If they want to emphasize the view-points of the object trajectory, they add
additional movements to the object (for example by shaking it). Saunders et al. utilized the notion
that the environment can also be modified to provide a complexity reducing scaffold.39 In their work,
human trainers teach robots certain behaviors (such as avoid-light or tidy-up) that are composed of
hierarchical sets of reusable primitives. The guidance can be either by direct teaching of primitives,
where the human controls the robot’s actions, or via manipulating the environment. For instance,
in case the robot is expected to associate certain sensors to certain tasks, a person can arrange the
environment accordingly to minimize confusing inputs from irrelevant sensors. Argall et al.1 uses a
two staged approach where, first, a policy for the target behavior (positioning hand for a grasp) is
synthesized from human demonstration; and then during the execution, the human guides the arm via
a tactile interface, effectively correcting and refining the policy. These tactile corrections improve the
grasping policies in terms of success and precision.

The studies summarized above focus either on robot imitation learning or modeling parental
scaffolding alone. On the other hand, our aim in this paper is to realize parental scaffolding in an
integrated developmental framework that starts from motor primitive formation and goes through
affordance learning and imitation. Learning through self-exploration and imitation are crucial
mechanisms in acquiring sensorimotor skills for human infants. We hold that realization of this
developmental progression in robots can give rise to human dexterity and adaptability. In fact, our
previous research contributed to this research program by showing that with self-exploration a robot
can shape its initially crude motor patterns into well controlled, parameterized behaviors which it
can use to understand the world around it.47, 49 However similar to infants, complex skill acquisition
may benefit from external help. In this paper, we extend this framework by enabling the robot to use
parental scaffolding in two major robot learning problems

• Section 2 describes our first extension attempt46 where a human caregiver speeds up the affordance
acquisition of a robot for grasp actions through parental scaffolding. Learning complex object
grasping through self-exploration is a slow and expensive process in the high-dimensional behavior
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parameter space of dexterous robot hands. A human caregiver can step in for help by physically
modifying the robot’s built-in reach-grasp-lift behavior during execution. While being guided by
the human, the robot first detects the ‘first-contact’ points its fingers make with the objects, and
stores the collection of these points as graspable regions, if the object is lifted successfully. Later,
it builds up simple classifiers using these experienced contact regions and use these classifiers to
detect graspable regions of novel objects. At the end, the robot hand is able to lift an object that
may be in different orientations by selecting one of the experienced reach and grasp trajectories.

• In our previous work,47 we showed that after learning object manipulation related affordances, the
robot can make plans to achieve desired goals and emulate end states of demonstrated actions. In
Section 3, we extend this framework and discuss how our robot, by using the learned behaviors and
affordance prediction mechanisms, can go beyond simple goal-level imitation and become a better
imitator. For this, we develop mechanisms to enable the robot to recognize and segment, with
the help of the demonstrator, an ongoing action in terms of its affordance based perception. Once
the subgoals are obtained as perceptual states at the end of each segment, the robot imitates the
observed action by chaining these sub-goals and satisfying them sequentially. In the experiments,
we showed that the robot can better understand and imitate observed complex action executions if
the demonstrator modifies his actions by inserting pauses in important points, akin to parents who
make similar modifications in infant-directed actions.

2. Scaffolding in Learning Affordances
In this section, we report on parental scaffolding being used to improve the performance of a reach-
grasp-lift action that was assumed to be acquired in a previous developmental stage. When an object is
perceived visually, a reach trajectory towards the center of the object is computed and executed; and in
case of any hand-object contact, fingers are flexed in an attempt to grasp the object. However, having
no initial knowledge about how to grasp objects, the robot always acts towards the object center. Object
graspability on the other hand, depends on the shape and orientation of the objects. This is where a
caregiver can interfere and modify the reach to object center execution, bringing the robot hand to an
appropriate position and orientation with respect to the object, in order to ensure successful grasping.
In other words, the robot’s default reach-grasp-lift trajectory is modified in a semi-kinesthetic way by
applying force to the robot arm. The final successful grasp trajectory is a combination of the robot’s
planned default trajectory and the human’s online force-based modification. Although the center of
the object was chosen as the target for the default grasp behavior (which is plausible based on3), this
is not critical for the operation of the system as the human caregiver modifies the default reach during
the execution.

The first-contact points, which are the points on the object where the robot fingers made initial
touch, are informative about the object graspability; therefore these first-contact points are recorded
and stored as potential grasp-affording parts. The robot can automatically assess the success of the
modified grasp action by lifting the hand after closing it, and then visually checking the table surface
to see if the object has been successfully lifted. The robot executes this modified grasp action with
different object orientations and learns a model that allows to detect graspable parts of even novel
objects.

We defined an affordance as “an acquired relation between a certain effect and a (entity, behavior)
tuple, such that when the agent applies the behavior on the entity, the effect is generated”.11 In
this study, affordance learning is realized by encoding the effect as grasped, the behavior as the
reach-grasp-lift action, and the entity as the local distance distribution around any object point.
Thus, using the guided interaction experience, the robot will learn grasp affordance by acquiring the
ability to predict if a point on the object affords graspability given its local distance distribution.
The first-contact points are used as positive samples and not-contacted points are used as negative
samples during the training. In the following sections, we provide the details of the robot platform,
perception, force control feedback and learning algorithms.

2.1. Robot platform
The aim of the experiments is to provide an environment where a human caregiver naturally interacts
with the robot, similar to parents interacting with their children. Additionally, the robot should acquire
reaching and grasping capabilities. Therefore we use an anthropomorphic hand-arm robot system,
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Fig. 2. The robot hand, arm, range camera (top-right), some objects and a tutor constitute the experimental
setup. The tutor can change the default trajectory of the robot to enable grasping via the force/torque sensor
based control.

where the arm is placed on a vertical stand, similar to a human arm extending from the torso (Fig. 2).
The system is composed of a 7 DoF Motoman arm for reaching, and a five fingered 16 DoF Gifu
robot hand for object manipulation, with lengths of 123 cm and 23 cm, respectively. In order to
sense the force applied by the human caregiver and modify the robot’s action execution accordingly,
we attached a 6 DoF Nitta force/torque sensor in between the robot hand and the arm, at the wrist
position.

For environment perception, an infrared time-of-flight range camera (SwissRanger SR-4000),
with 176×144 pixel array, 0.23◦ angular resolution and 1 cm distance accuracy is used. The range
camera is calibrated in the coordinate space of the robot hand by computing the transformation matrix
between positions extracted kinematically and perceived from the range camera. The environment is
represented as a point cloud in this space.

2.2. Robot perception
The robot uses its range camera to detect the objects on the table. The robot’s workspace consists of
a black table, a human demonstrator’s arm and hand, the robot’s own actuator and non-black objects.
The demonstrator and the robot body parts are also covered with black material to distinguish the
objects easily. The region of interest is defined as the volume over the table, and black pixels are
filtered out as the range readings from black surfaces are noisy. As a result, the remaining pixels
of the range image are taken as belonging to one or more objects. Since the range camera does not
provide reliable color information, the objects are segmented using Connected Component Labeling
algorithm19 based on the depth information. The algorithm differentiates object regions that are
spatially separated by a preset threshold value (2 cm in the current implementation). In order to
reduce the effect of camera noise, the pixels at the boundary of the object are removed, and median
and Gaussian filters with 5×5 window sizes are applied. Finally, various features, such as 3D position
of the object center or local distance histogram are computed using the 3D point cloud of the object.

We need to compute the distance between the fingers and the object in order to initiate grasping
when a touch occurs. This distance calculation is also necessary to find graspable object regions
by marking the object pixels that are first contacted. Finger positions are computed using forward-
kinematics based on the robot arm and hand angles. Pixel positions on the other hand are obtained
from the object point cloud using the calibrated range camera.
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2.3. Force-based human-robot interaction
The force/torque sensor attached to the wrist of the robot outputs two vectors, �fapp and �mapp, the
current applied force and moment vectors, continuously. Initially, the force vector �fapp in the robot’s
end-effector frame is mapped to the force vector �fglob in the global frame. Once mapped, � �p ∝ �fglob

and �θ ∝ �mapp give the desired changes in the position and orientation of the robot hand. Then,
the corresponding necessary updates to the joint angles are calculated via inverse kinematics. These
desired joint displacements are inserted in robot control loop that may be executing reach-to-grasp
action.

Since the force/torque sensor is attached to the wrist, it reads non-negligible measurements due
to the hand’s inertia, even when there is no human force acting on it. The forces depend on hand
orientation and acceleration, which can be used to calculate this systematic errors. However, in our
case, there was also significant interference from heavy cables connected to the hand, with resultant
complicated dynamical effects, therefore we preferred a learning approach. We collected data by
systematically sampling a range of orientations in static configurations. Then, by applying least
squares regression on this data, we obtained predictors for every configuration point, which were
later used for compensating for the hand’s interference.

2.4. Distance histogram based classifier
For learning graspable parts (object handles in our experiments), we need a feature that captures the
relative property of the grasped-part with regard to the totality of the object. Inspired from the shape
and topological feature detectors in primate brain,27 we define a metric that captures the distribution
of three dimensional points (i.e. voxels) that make up a given object. We propose that each voxel is
identified by the distribution of its distances from the neighboring voxels that make up the object. This
distribution changes smoothly as one moves smoothly on the surface of the object, and is invariant
with respect to orientation changes. Our idea was to develop a classifier based on this metric, with
the intuition that the handle voxels would have similar distance distributions that are significantly
different from the body voxel distributions. The handle voxels that correspond to the automatically
detected first-contact points are used to construct the handle distance distribution (pH ), and the
remaining (not-contacted) voxels are used to compute the body distance distribution (pB) as follows.

Let H and B be the sets of voxels from the handle and the body of the object, respectively, at a
given interaction; and let Z be the union of H and B. We define a δ neighbor distance function to
operate on a voxel x (three dimensional vector) and a set of voxels, Y with

‖x, Y‖δ = {‖x − y‖ : y ∈ Y ∧ ‖x − y‖ < δ}

Here δ is a constant that defines a voxel neighborhood to span at least the gap between the handle
and the body. In the experiments, δ is set to cover the point cloud representation of the objects used.
With this we can compactly define these two distance sets for the handle set and the body set as:

�H = {‖hi, Z‖δ : hi ∈ H } (1)

and

�B = {‖bi, Z‖δ : bi ∈ B}
Taking hist() as an operator (with bin size of 20) to return a normalized histogram of a given set we
obtain the two probability density estimates for the handle and body voxels:

pH ∼ hist(�H1 ∪ �H1 . . . �HN
) (2)

and

pB ∼ hist(�B1 ∪ �B1 . . . �BN
)

where N is the number of interactions.
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Later, when the robot faces a novel object, it computes a distance distribution for each point on
the object, compares them with pH and pB , and decides which points can be used as handles.

To determine whether a given voxel v belongs to the handle or not, we compute the distance
distribution p{v} ∼ hist(�{v}), and assess its similarity to pH and pB as follows:

simH (v) = max

⎛
⎝

s∫

0

pH − p{v}

⎞
⎠ simB(v) = max

⎛
⎝

s∫

0

pB − p{v}

⎞
⎠

where the max runs over s < 1. The voxel v is marked as a handle voxel if

simH (v) − simB(v) < τ (3)

otherwise it is deemed as a body voxel. The τ parameter is used to shift the decision boundary and
minimize false positives.

2.5. Grasping experiments
2.5.1. Detecting touch regions in guided grasps. The robot begins with an initial rudimentary reach
and grasp primitive: On perceiving an object, it automatically tries to reach for its center. If the reach
results in object contact, the robot will close its fingers in a grasp attempt. The human caregiver
intervenes here: During the motion s/he holds the robot arm, and by applying force, corrects the
automated trajectory. Typically the aim of this interference is to correct the grasping target, since
humans intuitively try to grasp an object by its handle rather than its geometric center. Yet, this is still
a collaborative effort, since the caregiver tends to correct the robot’s trajectory minimally, and only
when necessary: If s/he believes the robot’s movement is optimal, s/he may not interfere at all. Also
critical is his/her understanding of the robot’s control system and the properties of the robot hand.
S/he will develop a sense of the physical system in time, resulting in more effective movements.
Once the grasp is achieved, the robot proceeds to identify the contact points on the object, utilizing
its camera and proprioceptive sensors. Using the distance histogram based classifier explained above,
“handle-detectors” are then built on top of this information, so that the robot can perform efficient
grasps on novel objects without guidance in the future.

The robot used 6 successful grasps guided towards the handle of the object placed in different
orientations to train the “handle-detectors”. The positive samples are obtained from the first contact
points which correspond to parts of the handle, whereas the untouched object body points provide
the negative samples. This approach is different from self-explorative affordance learning where the
robot’s exploratory interactions were labeled as success or failure depending on the grasped/not-
grasped effect, and graspability was predicted based on the global shape and size features.47

2.5.2. Generalizing grasp detection. In this section, we verify the generalization performance of the
“handle-detectors” as follows. The first-contact points, which are used as the ground truth in training
the “handle-detectors”, do not cover all the graspable regions of the object as fingers may not contact
with the complete handle. This can seen in the top row of Fig. 3, where illustrated first-contact points
correspond to only a small part of the handles. We first test whether the trained “handle-detectors”
can detect the graspable regions that were not marked as the handle during training. The middle
row of Fig. 3 shows the distance histograms that are used for building handle classifiers. As shown
in the bottom row of Fig. 3, most of the handle voxels can be classified correctly, with few false
positives. Note that the tutor guided the hand of the robot only towards the object handles, thus the
robot learned that only handle-like structures afford graspability. However, by guiding the robot hand
towards other parts of other objects, various grasp affordances could have been learned. Next, we
proceed to predicting handle points of completely novel objects. Six novel objects are utilized for this
experiment (Fig. 4(a)). Figure 4(b) shows that, without any optimization, despite the occasional false
matches, most of the predicted voxels indeed either belong to designated handles, or regions that can
be used as a handle. Furthermore, with a hand tuned threshold parameter (τ = 0.13), false positives
can be minimized while still extracting grasp points (see Fig. 4(c)).

2.5.3. Executing grasps autonomously. The main focus of this experiment is to identify candidate
grasping points of objects using the parental scaffolding framework. Therefore, once the target
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Fig. 3. Top row: Guided grasp experience. The first-contacts are overlayed on the snapshots of the guided
grasp executions. Middle row: Distance histograms of the guided grasp executions. Blue and gray histograms
correspond to distance distributions of the graspable and the remaining pixels, respectively. Bottom row: The
results obtained from grasp classification of each voxel on the training objects.

Fig. 4. Grasp classification is performed for the novel objects shown in (a). The results of the grasp region
detection are shown (b) and (c) where the τ threshold is adjusted to minimize the false positives in the latter
case.

grasping location is calculated, exactly how to execute these grasps is not of primary interest. Yet,
it is also possible to extend the learned information in order to enable an automated control of the
arm for reaching and lifting the object. We design a simple lookup-table based mechanism to select a
reach-grasp-lift execution trajectory, based on the handle orientation with respect to the object center.

During training, we store three kinds of information for each object: (1) the set of object voxels,
(2) the set of touch voxels, and (3) the hand-arm angle trajectory (the trajectory that is guided
by the caregiver). We then compute the position of the largest touch region relative to the object
center. The lookup-table is constructed such that it will take this relative position as input, and return
the associated hand-arm trajectory as learned from this experience. After training, when the robot
perceives an object, it first predicts the grasp regions as detailed above, then computes the relative
position of the largest grasp region with respect to the object center, and uses this relative position to
retrieve a previously learned hand-arm trajectory from the lookup table.

We demonstrate the efficiency of this simple approach with the mug shaped object placed in 5
different orientations. Four of these executions proved to be successful, since the object was placed
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Fig. 5. Robot grasps objects using the trajectories learned during scaffolding. Each row corresponds to a different
grasp execution.

Fig. 6. An example scenario where demonstration of enclosing a cylinder with a ring is continuous in (a) and
exaggerated in (b). The goal configuration of the ring is indicated by the red colored ring enclosing the cylinder.
In (a), if the robot cannot capture the important features of the demonstration, it may attempt to bring the ring
to the goal position by simply pushing it to the right, where the ring will push the cylinder away rather than
enclosing it. On the other hand, when important steps are highlighted by for example pauses as in (b), the
robot can extract sub-goals represented in its perceptual space and find a behavior sequence from its behavior
repertoire to imitate the action correctly.

in similar orientations with the training instances. The final execution, which required reaching for a
handle behind the object that the robot did not encounter before, failed as expected. Figure 5 depicts
snapshots of the trajectories of successful grasp executions. (One of the successful grasps was very
similar to the first one so it is excluded to save space.)

3. Scaffolding in Imitation Learning
In this section, we explore how scaffolding can be used to transform our goal-emulation-able robot to
a better imitator as a given demonstration may not be replicated with simple goal emulation. In fact
learning higher level skills based on previously learned simpler ones is more economical and usually
easier for building a complex sensorimotor system.22 Therefore, here we propose to use sequential
goal emulation (that is based on learned affordance prediction in our framework) to achieve complex
imitation.

Extracting sub-goals or important features from a demonstration is not straightforward, as
demonstrated action trajectory may not correspond to any robot behavior developed so far. For
example when the robot is asked to imitate a demonstration shown in Fig. 6(a), as the observed
trajectory is not represented in the robot’s sensorimotor space, executing the behavior that seemingly
achieves the goal would not satisfy the imitation criteria (for example a right push of the ring would
tip over the cylinder). Young infants also have similar difficulties in mapping certain observed actions
to their own action repertoire, so they fail imitating these actions35 (also see50 for neurophysiological
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evidence on how infants’ own action repertoire affects the understanding of observed actions of
others.)

As explained in the Introduction Section, to overcome this difficulty, parents are known to make
modifications in infant-directed actions, i.e. use “motionese”. Our fine-grained analysis using a
computational attention model also reveals the role of motionese in action learning.28 Longer pauses
before and after the action demonstration usually underline the initial and final states of the action
(i.e. the goal of the action) whereas shorter but more frequent pauses between movements highlight
the sub-goals.

Inspired from this, we implement perception mechanisms in our robot so that it can make use
of motionese (when available) to identify important steps and boundaries in the otherwise complex
stream of motion. A human tutor can exaggerate the relevant features in his demonstration as in
Fig. 6(b), and enable the robot to map the movement segments into its own behavior repertoire, and
imitate the action sequence successfully.

3.1. Affordances and effect prediction
In our previous work,47, 49 the affordances were defined as (object, behavior, effect) relations, and
with this we have shown that affordance relations can be learned through interaction without any
supervision. As learning the prediction ability is not focus of this paper, we skip the details and shortly
present how prediction operator works. This prediction operator can predict the continuous change
in features given object feature vector ( f ()), behavior type (bj ) and behavior parameters (ρf ):

( f (), bj , ρf ) → f ′bj

effect (4)

where f ′bj

effect denotes the effect predicted to be observed after execution of behavior bj .

3.2. State transition
The state corresponds to the list of feature vectors obtained from the objects in the environment:

S0 = [f ()
o0

, f ()
o1

, .., f ()
om

]

where () denotes the zero length behavior sequence executed on the objects, and m is the maximum
number of objects. If the actual number of objects is less than m, the visibility features of non-existing
objects are set to 0.

State transition occurs when the robot executes one of its behaviors on an object. Only one object
is assumed to be affected at a time during the execution of a single behavior, i.e. only the features of
the corresponding object is changed during a state transition. Thus, the next state can be predicted
for any behavior using the prediction scheme given in Eq. (4) as follows:

S ′
t+1 = St + [. . . 0, f ′bj effect

o , 0, ..] (5)

where behavior bj is executed on object o and features of this object change by the summation
operator.

Using an iterative search in the behavior parameter space, the robot can also find the best behavior
(b∗) and its parameters that is predicted to generate a desired (des) effect given any object:

b∗( f (), f des
effect) = arg min

bj ,ρf

( f des
effect − f ′bj

effect) (6)

3.3. Goal-emulation
Goal-emulation refers to achieving a goal represented as desired world state (S∗ = [ f o1

, f o2
]..) by

generating a plan. The plan consists of a behavior sequence (b0, b1, . . .) that is predicted to transform

the given state into the goal state (S0
b0−→ S1

b1−→ S2 . . . → S∗). Because prediction is based on vector
summation Eq. (5), the robot can estimate the total effect that a sequence of behaviors will create by
simply summing up all the effect vectors, and thus can use this for multi-step prediction.
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Fig. 7. The robot can choose to follow the demonstration by executing the behaviors from Imitation module
(left panel) or can find the sequence of behavior using Goal Emulation module (right panel) in any step to
reach to the desired state. Note that Imitation Module also uses Goal Emulation Module inside to find behavior
sequence between each sub-goal state pair. In this example, push-left and grasp-up behaviors are selected by
the Imitation and Goal-Emulation modules, respectively; and push-left is selected by the user through Graphical
User Interface.

Given a goal state, the robot can use any state space search method in finding this behavior
sequence. In this paper, we use forward chaining which uses a tree structure with nodes holding the
perceptual states and edges connecting states to the predicted next states. Each edge corresponds to
the prediction of execution of a different behavior on a different object, and transfers the state to a
different state based on Eq. (5). Starting from the initial state encoded in the root node, the next states
for different behavior-object pairs are predicted for each state. A simple example where forward
chaining is applied to achieve the goal state is provided in Fig. 7 right panel.

3.4. Imitation
Imitation (as opposed to goal-emulation where demonstration details are not important) refers
to finding the behavior sequence that enables the robot to follow a similar trajectory with the
demonstration.44 As our focus is object manipulation, the robot needs to detect the important subgoals
in the demonstration which can be used to generate a similar object trajectory by achieving those
subgoals successively in discrete steps.

The robot observes the demonstration and extracts the initial and goal states, as well as the
intermediate states (encoded as sub-goals) by detecting pauses which may be introduced by a
motionese engaged tutor. If no pause can be detected, then a random intermediate state will be
picked up as the sub-goal state, which may lead to a failed imitation attempt 1.

Imitation Module (Fig. 7, left panel) finds the behavior sequence that brings the initial state (S0)
to the goal state (S∗) following the detected sub-goal state sequence. Assuming three pauses were

1 The aim of introducing an intermediate state is to provide feedback to the tutor about the failed imitation
attempt of the robot, and provide some indirect hint about the observation mechanisms of the robot. In the
current implementation, this state is selected randomly. However the selection of a sub-state that reflects the
current sensorimotor capabilities of the robot, and propagating this selection to the tutor will have a significant
impact on the tutor’s comprehension of the robot skills.
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detected along with their states (S∗
0 , S∗

1 , S∗
2 ), Imitation Module needs to find four behavior sequences

that successively transfer the initial state to the goal state through the sub-goal states:

S0
beh-seq-0−−−−→ S∗

0
beh-seq-1−−−−→ S∗

1
beh-seq-2−−−−→ S∗

2
beh-seq-3−−−−→ S∗ (7)

In the experiments reported in this article, each arrow happened to correspond to a single-affordance
perception, i.e. each state transition was achieved by one behavior. However, our framework is not
limited to this, and in fact it can form multi-step plans for reaching individual sub-goals.47

3.5. Imitation experiments
3.5.1. Behaviors. The robot interacts with the objects using three behaviors, namely grasp, release,
and push which were learned before.49 The focus of this experiment is the realization of the imitation
rather than a complete verification of the previously learned behaviors using a simple grasp scenario.
For this purpose, we used simple convex objects without handles which could be grasped using the
transferred grasp behavior.

For any behavior, initial, target and final hand positions are computed as offsets from the object
center, and a trajectory that passes through these via points are executed as follows:

• Initial position is the offset from the object where the robot places its hand prior to interaction.
This parameter is fixed and same for all behaviors, and places the robot hand in between the object
and the robot torso towards right in lateral direction. If the object to be interacted is already in the
robot’s hand, the initial position is set as the current position of the robot hand as there is no need
to re-position the hand.

• Target is the offset from the object-center that determines which part of the robot’s hand makes
contact with the object. Using this parameter which is fixed and previously learned for each
behavior, the robot touches to the object with its palm in grasp and release behaviors, and with its
fingers in push behavior.

• Final position is the offset from the object where the robot brings its hand at the end of the behavior
execution. Final position can be set to any arbitrary point in the robot’s workspace unless it is too
close to the table surface proximity to avoid any collision.

• Hand-close and hand-open positions are again given as offsets from the object. The hand encloses
into a fist with grasp and release behaviors when it is close to the object center, and the fingers
fully extend with release behavior at the end of action execution. Push behavior does not change
hand-state unless the object is already in the robot’s hand. In this case the fingers fully extend in
the beginning of the hand movement.

With the appropriate ranges of action parameters, target objects can be grasped, released or pushed
to different locations depending on the final position. As the final position appears to be the primary
determinant of the effect of an applied action, it is used in searching for the best behavior parameter
(ρf ) to generate a desired effect (Eq. (6)) and imitate the demonstration (Eq. (7)).

3.5.2. Control architecture. From a robotic architectural perspective, imitation and goal-emulation
based control can co-exist and work complementarily. Selecting behaviors based on Imitation Module
(see Fig. 7) results in following the exact trajectory of the demonstrator, to the extent that it is decimated
by the pauses inserted by the tutor. On the other hand, when Goal Emulation Module (right panel) is
selected, then a behavior sequence that brings the current state to the goal state is found independent
of the intermediate states. In the current implementation, we followed a simple approach where the
Behavior Selection Module simply reflects the choice of the experimenter that is conveyed through a
Graphical User Interface. For an autonomous robotic agent, an arbitration mechanism to choose an
appropriate module depending on the context and demonstration needs to be implemented. Although,
work is underway in this direction, we leave this topic for an architecture focused publication as it is
out of the scope of the current paper.

3.5.3. Imitation performance. This section presents the experimental results of the developed
imitation system. In this system the robot uses the discovered behavior primitives and learned
affordances to imitate demonstrations which include deliberate motionese. As described in
Section 3.4, the robot observes the demonstration and extracts the initial and goal states, as well
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Fig. 8. Snapshots where the robot imitates the demonstration performed by an experienced tutor. In (b) from left
to right, grasp-up, grasp-left, grasp-right, release, and push actions are planned and executed. The object paths
are shown with arrows.

as the intermediate states (encoded as sub-goals) by detecting pauses which may be introduced by a
motionese-engaged tutor.

We tested the Imitation Module expecting the robot to follow the demonstration of a subject
who deliberately inserts pauses into his trajectory in the ‘right’ moments. The demonstration was
performed by an experienced tutor who knows the working principles of the system. The aim of this
experiment was to validate the robot’s ability to find sub-goals which include lift-object, move-object-
around or disappear-object-from-the-view by using affordance prediction capability for graspability,
rollability, etc.

To test the imitation capability of the robot, the tutor was asked to grasp the object on the table
and move it in space as shown in Fig. 8. The tutor used his own action repertoire to move the
object around, while the robot monitored the object, detected the pauses, and encoded these pauses
as intermediate states. Following the demonstration, the robot found the sequence of behaviors to
obtain the intermediate states in sequence using the imitation procedure summarized in Fig. 7 and
the behavior selection procedure given in Eq. (6).

The human’s demonstration and imitation of the robot are shown in Fig. 8. From the robot’s point
of view, the object was (1) lifted up, (2) moved to left, (3) moved to right in the air, (4) put on the table,
and (5) removed from the table. The robot, after detecting the intermediate states and encoding them
as sub-goals, computed a behavior sequence provided in Table I. As mentioned before, the behaviors
used by the robot were autonomously discovered in the previous developmental stage, labeled as
grasp, release and push to improve readability of the text, and not used by the robot. Behavior
parameters (ρf ) in this experiment correspond to final position that was explained in Section 3.5.1.
As the object was in the robot’s hand prior to behavior executions for 2nd, 3rd and 4th steps, the hand
was not re-positioned to initial position.

Execution of these behaviors resulted in a trajectory that is similar to the demonstration with
the following exceptions: First of all, the object was not moved exactly to the same positions in
intermediate steps because of the noise in the perception and due to kinematic constraints of the
robot. Second, after the object was released, it rolled over the table (to the right) and did not end
up exactly below the hand as the robot predicted. Third, push behavior could not roll the object off
the table without (the experimenter) bending the table as the push was not strong enough to cause a
high-speed roll. Still, the robot was able to accomplish the task by achieving the observed sub-goal
changes using its own behaviors. For example, the tutor’s ‘removal’ of the object from the table (by
bringing it outside camera view) was mapped to push behavior of the robot as the object was rollable,
and push applied to a rollable object was predicted to make the object disappear. As another example,
‘putting on table’ action performed by the tutor was mapped to the robot’s release behavior which
had similar effect.
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Table I. Sequence of behaviors that Imitation Module generated to imitate the demonstration shown in
Fig. 8(a). The behavior primitives were discovered in the previous behavior formation phase and each id
was assigned automatically. Step corresponds to the order in the sequence. Labels are provided for readers’
better understanding of the behaviors. The first, second and third parameters correspond to movement in
lateral, vertical and frontal axis with respect to the robot body, after object contact, respectively. The last

column includes explanations of the parameters with large effects only.

Step Beh. Id Beh. Label Beh. Param. Explanation

1 0 grasp (−3,+21,−1) Grasped the object and lifted up 21 cm.
2 0 grasp (+9,+13,−3) Lifted it up further 13 cm and moved 9 cm to the left.
3 0 grasp (−21,+5,+4) Moved object 21 cm to the right.
4 2 release (+4, 0,+4) Released the object.
5 1 push (+10,+4, 0) Pushed the object towards right for 10 cm.

This experiment shows that using discovered behaviors and learned affordances enabled the robot
to seamlessly embody the observation in its sensorimotor space and flexibly imitate the demonstration
based on the learned relations between own capabilities and the object properties. If the object was
a non-rollable one, then the robot would probably push it several times in order to drop it from the
edge of the table as shown by Ugur et al.48

3.5.4. Imitation versus goal-emulation. In the Introduction Section, we discussed that understanding
“what to imitate” is a nontrivial problem both in infants and robots; and is an active research in
robotics and developmental science. It is not clear whether humans have multiple mechanisms for
imitation or how they modulate or arbitrate their imitation modes. From a robotics point of view,
hosting multiple mechanisms (modules) may be necessary. However, employing multiple mechanisms
(modules) to imitate an observed action has its own advantages and disadvantages. If the tutor has
engaged in a motionese based interaction with the robot, and provides sufficient cues to the robot,
the Imitation Module makes complex imitation possible. However this requires keeping all sub-goals
in the memory of the cognitive system of the robot, and executing all corresponding actions, which
might not be practical if the tutor makes a large number of pauses. Furthermore, the Imitation Module
needs additional mechanisms to deal with failures during execution, and to take corrective actions.
On the other hand, Goal-emulation needs no additional mechanisms as it can automatically recover
by simply reassessing the current state and re-planning. However it may fail in complex environments
as predictions are made based on basic object affordances. An autonomous mechanism that is guided
by a caregiver’s signals should be formalized and implemented based on insights obtained from
developmental psychology.

4. Conclusion
In this paper, we discussed how we can extend our previously developed unsupervised affordance
learning framework so that the robot can benefit from parental scaffolding for affordance learning
and action imitation. For the former, we used physical parental scaffolding to shape the premature
reach and grasp attempts of the robot, where the caregiver intervened the ongoing executions to
transform them into successful grasps. This resulted in (1) the discovery of new affordances, i.e.
handles and (2) the formation of new motor skills, i.e. handle-directed grasping. For the latter, we
utilized the capability of goal-emulation, which had been obtained in the previous developmental
stages, to replicate a demonstrated action. An important point here is that once a demonstrated action
can be segmented as sub-goals in the perceptual space of the robot, satisfying them sequentially
would reproduce the observed action. Therefore, motionese provided cues to the robot for parsing
a demonstrated action into performable chunks. Our experiments showed that complex actions that
were not directly represented in the sensorimotor space of the robot, and hence could not be simply
reproduced by goal-emulation, can be imitated when motionese was adopted by the demonstrators.

The scientific contribution of this work is twofold.

• First, with the addition of imitation with motionese, we have obtained an integrated developmental
system that starts off with simple motor acts that are turned into well defined motor behaviors
through development, which are then used by the robot to explore its action capabilities. With
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this, the robot represents the world in terms of perceptual changes it can induce through its
behaviors, and uses this information to make plans to achieve goals. Current work showed how
this can be enhanced via scaffolding, and how the imitation skill can be built upon capabilities
and structures acquired through development. In particular, we studied two of the five attention-
directing gestures,53 namely ‘embody’ and ‘demonstrate’, in our robot-caregiver system. We
believe that our system parallels infant development and has the potential to provide insights into
mechanisms of mental development in biological systems.

• Second, when looked at from a robotics perspective we have developed a learning robotic platform
that has the ability to self-learn object affordances and actions applicable to them, and can make
use of human teaching by interpreting the demonstrations in terms of the structures developed
in its perceptual space. This is the first robotics work where motionese based robot learning and
control is realized in a truly developmental setting. The system can sustain both goal-emulation
and imitation guided by motionese when it is available.

5. Discussion
The two robotics problems that were tackled in this paper, namely grasp learning and learning from
demonstration, have been intensively studied in recent years. Our main focus was to use parental
scaffolding as a bootstrapping mechanism from a developmental perspective, yet our approach can be
discussed in relation to other robotic methods that deal with these two problems. Regarding learning
from demonstration studies, the focus is generally on how to represent the demonstrated actions
in a generic way, and how to generalize them in new contexts. For example, Calinon et al.9 used
Principal Component Analysis and Gaussian Mixture models to find the relevant features of the
actions, and to encode them in a compact way, respectively. Recently, Dynamical Motor Primitives
(DMP) framework42 has been shown to be very effective in learning of discrete32 and periodic
movements,16 and in generalizing multiple movements to new situations.45 Pastor et al.34 showed
that the sensory feedback obtained from object-robot interactions can be used to adapt DMP-based
movements in environments with uncertainties. We believe that such powerful motion representation
frameworks are necessary in imitation of complex actions where the focus is on replicating end-
effector or joint trajectories respecting kinematic constraints and velocity profiles. Our object-based
imitation, which uses learned effect prediction and sub-goal emulation mechanisms, different from
the above studies, resides between full trajectory level imitation and goal emulation; and should be
coupled with such approaches in order to exhibit full-range of imitation capabilities. Even in the
context of goal-emulation based imitation, such a capability becomes crucial in case the tutors are
not cooperative in adapting their demonstrations. In such cases, the robot can use a combination of
cues from end-effectors and object movements; or can fall back to self-learning mode (e.g. by using
Reinforcement Learning36).

Regarding grasp learning, various methods that use force analysis,5 local image features,40 global
object models,13 or object parts20 have been developed and applied in real-world settings successfully.
Particularly, Saxena et al.40 trained the robot on synthetic 2D images marking good grasping points.
After the training, the robot could identify good grasping points on a novel object, given only its 2D
images. Once the candidate grasping points were identified in 2D, several images were combined to
triangulate the points and estimate their 3D positions. Detry et al.12 represented grasping affordances
for a gripper as a continuous distribution in a 6D pose space where the distribution was initialized
by predefined visual descriptors or sample grips executed by a human (not the robot), and refined
through the robot’s self-exploration. While these works aim to provide the robot with initially perfect
or almost-perfect information, our focus has been the online guidance of a human teacher to correct
the robot’s naive movements on-the-fly. Although the results demonstrate that the robot was able
to efficiently learn graspable regions through parental scaffolding, and was able to detect graspable
parts of novel objects, there is room for improvement which we discuss in the next section.

6. Future Work
In this study, we focused on parental scaffolding from the perspective of the robot. As in infant-
parent interaction, we required guidance of the tutor (i.e. scaffolding) to enable the robot to acquire
manipulation skills. For this, the tutor’s understanding of the perception and action capabilities of
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the robot is critical. Generalizing from infant-parent interactions, we expect that even tutors without
much knowledge about the capabilities of the robot will be able to “learn how the robot learns” by
observing the failed attempts of the robot. In the current work, in terms of “embodied scaffolding”,
the naive tutors need to adapt to the force-based human-robot interaction setup, and learn the grasp
learning mechanism of the robot. Regarding imitation learning, naive subjects need to understand
the imitation capability of the robot, and act accordingly. Indeed, our preliminary experiments with
naive demonstrators, though not reported here, indicate that the system engages the naive tutors to use
motionese perceivable to the robot until the demonstrated action is imitated by the robot accurately. In
these experiments, the only observable feedback to the naive tutors was the failed imitation attempts
of the robot. However, as shown by Fischer et al.15, how the tutors adapt their teaching behavior for
the requirements of the learning robot largely depends on the type of the feedback obtained from
the system. Thus, suitable feedback mechanisms are crucial to achieve more effective human-robot
learning systems. How this feedback can be learned by the robot or encoded in the parental scaffolding
framework are interesting open research questions that we plan to study next.

Parental scaffolding has been used to extend the basic sensorimotor capabilities of the robot in this
work. Detecting progressively more complex affordances (such as handle graspability in the first case
study and learning of complex actions in the second one) requires better learning methods and a large
amount of experience obtained through robot-environment interactions. The complex skills learned
through embodied scaffolding and motionese in general require affordance detection and behavior
execution on multiple objects as our motivating examples illustrated in Figs. 1 and 6. Our system
in its current form cannot deal with such situations, and should be extended to account for multi-
object interactions. To extend this framework for a large set of objects, actions and affordances, we
believe that using previously learned affordances, which partially capture robot-object dynamics, will
provide bootstrapping in learning more complex affordances, reducing the exploration and training
time significantly.

Acknowledgments
This research was partially supported by European Community’s Seventh Framework Programme
FP7/2007-2013 (Specific Programme Cooperation, Theme 3, Information and Communication
Technologies) under grant agreement no. 270273, Xperience; by European Community’s Seventh
Framework Programme FP7/2007-2013 under the grant agreement no. 321700, Converge; and by
JSPS/MEXT Grants-in-Aid for Scientific Research (Research Project Number: 24000012, 24119003).
It was also partially funded by a contract in H23 with the Ministry of Internal Affairs and
Communications, Japan, entitled ‘Novel and innovative R&D making use of brain structures’.

References
1. B. D. Argall, E. L. Sauser and A. G. Billard, “Tactile Guidance for Policy Refinement and Reuse,”

Proceedings of the 9th IEEE International Conference on Development and Learning (2010) pp. 7–12.
2. J. Babic, J. Hale and E. Oztop, “Human sensorimotor learning for humanoid robot skill synthesis,” Adapt.

Behav. 19, 250–263 (2011).
3. T. M. Barrett and A. Needham, “Developmental differences in infants’ use of an object’s shape to grasp it

securely,” Developmental Psychobiology 50(1), 97–106 (2008).
4. L. E. Berk and A. Winsler, “Scaffolding Children’s Learning: Vygotsky and Early Childhood Education,”

National Assoc. for Education (1995).
5. A. Bicchi and V. Kumar, “Robotic Grasping and Contact: A Review,” Proceedings of the IEEE International

Conference on Robotics and Automation (2000) pp. 348–353.
6. A. Billard, “Learning motor skills by imitation: A biologically inspired robotic model,” Cybern. Syst. 32,

155–193 (2000).
7. R. J. Brand, D. A. Baldwin and L. A. Ashburn, “Evidence for ‘motionese’: Modifications in mothers’

infant-directed action,” Developmental Sci. 5(1), 72–83 (2002).
8. C. Breazeal, Learning by Scaffolding PhD Thesis, Elec. Eng. Comp. Sci. (MIT, Cambridge, MA, 1999).
9. S. Calinon, F. Guenter and A. Billard, “On learning, representing, and generalizing a task in a humanoid

robot,” IEEE Trans. Syst. Man Cybern. 37(2), 286–298 (2007).
10. M. Carpenter, J. Call and M. Tomasello, “Understanding ‘prior intentions’ enables two-year-olds to

imitatively learn a complex task,” Child Dev. 73(5), 1431–1441 (2002).
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