Robotica (2018) © Cambridge University Press 2018
doi:10.1017 /xxxx

Compliant Parametric Dynamic Movement
Primitives

Emre Ugur*, Hakan Girgin

Bogazici University, Computer Engineering

(Accepted MONTH DAY, YEAR. First published online: MONTH DAY, YEAR)

SUMMARY

In this paper, we propose and implement an advanced manipulation framework that
enables parametric learning of complex action trajectories along with their haptic
feedback profiles. Our framework extends Dynamic Movement Primitives (DMPs)
method with a new parametric non-linear shaping function and a novel force-feedback
coupling term. The non-linear trajectories of the action control variables and the haptic
feedback trajectories measured during execution are encoded with parametric temporal
probabilistic models, namely Parametric Hidden Markov Models (PHMMs). PHMMs
enable autonomous segmentation of a taught skill based on the statistical information
extracted from multiple demonstrations, and learning the relations between the model
parameters and the properties extracted from the environment. Hidden states with high-
variances in observation probabilities are interpreted as parts of the skill that could
not be reliably learned and autonomously executed due to possibly uncertain or missing
information about the environment. In those parts, our proposed force-feedback coupling
term, which computes the deviation of the actual force feedback from the one predicted
by the force-feedback PHMM, acts as a compliance term, enabling a human to scaffold
the ongoing movement trajectory to accomplish the task. Our method is verified in a
number of tasks including a real pick and place task that involves obstacles of different
heights. Our robot, Baxter, successfully learned to generate the trajectory taking into the
heights of the obstacles, move its end effector stiffly (and accurately) along the generated
trajectory while passing through apertures, and allow human-robot collaboration in the
autonomously detected segments of the motion, for example when the gripper picks up
the object whose position is not provided to the robot.

KEYWORDS: Learning from Demonstration; Dynamic Movement Primitives; Hidden
Markov Models; Parametric Actions; Haptic Feedback Models

1. Introduction

While robots have been very effectively used for complex tasks in structured environments
for decades (e.g. industrial robots), only recently they have started appearing in our daily
life (e.g. mobile vacuum cleaners and autonomous cars). Recent advances in materials
science, computer vision, machine learning and control with increasing computing power
pave the way to the robots which can exhibit impressive skills in uncertain and dynamic
environments. The era of “Cambrian Explosion for robotics”! is probably approaching
due to the developments in these fronts. One avenue towards progress lies in semi-
structured domains that limit the scope of the robot’s operation to a predictable subset,
and where useful robot functionality can be achieved by limited levels of autonomy.
Supermarkets, warehouses, and to some extent office and hospital environments provide
such domains where the physical layout and structures are well-defined; the set of objects
and their common locations are mostly fixed; and the required tasks such as pick and
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place are typical. Endowing robots with limited but effective set of skills that exploit
multi-modal sensory feedback to the maximum extent can overcome a major obstacle to
deployment of real manipulation systems in supermarkets and similar, semi-structured
domains. Exploitation of the sensory feedback can be used in perceiving the action
possibilities provided to the robot,? in generating plans based on detected actions and
their predicted effects,® in monitoring action execution, and in intelligent and robust
response to unexpected external perturbations.*

In the semi-structured environments mentioned about, the set of required skills
for well-defined tasks can be effectively transferred to the robots using learning from
demonstration framework.® From possibly several demonstrations of a particular skill in
different configurations, the robot needs to capture the important characteristics from
its observations, and be able to reproduce the learned skill in new configurations, under
perturbation, noise or uncertainty. Action executions that achieve a particular task in
such predictable environments would have typical characteristics: they follow common
movement trajectories and they generate regular perceptual changes in the environment.
While the overall shape is common in general, the details of the movement trajectories
might differ due to constraints imposed by the environment, i.e. different motions might
be required to achieve the same task in different settings. If the robot has the ability
to perceive the properties of the environment that affect the execution of an action, it
can learn the relations between these properties and the action control variables. In such
situations, the robot should be able to parameterize the movement trajectory based on
these properties, predict the perceptual changes, and successfully execute the actions
even in novel environment configurations. However if the robot cannot find a correlation
between any perceived/given property of the environment and the movement trajectory,
it would have no means to explain the variance observed in successful action executions.
Such a variance might be due to unimportance of following an exact trajectory during the
corresponding part of the execution or due to robot’s inability to extract (or learn from)
the related properties of the environment. In the former case, the robot can safely apply
any trajectory from the observed range, whereas in the latter case we expect that the
robot decides that the corresponding part of the action cannot be reliably learned and
executed autonomously. In other words, external help would be required during robot
execution. Therefore, it is plausible to design the system such that in both cases, the
robot automatically switches to a mode that follows an average trajectory, complying
with external forces during execution of the corresponding part of the skill.

In this paper, we propose a manipulation framework, Compliant Parametric
Dynamic Movement Primitives (CPDMP), that can encode and generate complex
movement trajectories, parameterize these trajectories based on specific properties of
the environment, learn sensory feedback models observed during action executions, and
automatically switch to a mode that enables external help during observed high-variance
segments of the demonstrated skill. The compliance is realized through exploiting the
difference between the actual and expected sensory feedback, which is computed from
learned sensory feedback models.

Dynamic Movement Primitives (DMPs)® are used as the base system and are extended
to encode and reproduce the required actions. DMPs encode the demonstrated trajectory
as a set of differential equations, and offers advantages such as one-shot learning of non-
linear movements, real-time stability and robustness under perturbations with guarantees
in reaching the goal state, generalization of the movement for different goals, and
linear combination of parameters.” As noted by Colome and Torras,® in order to learn
the relations between trajectories and parameter space, large number of parameters
are required to be explored with the original DMP formulation. In this paper, we
used Parametric Hidden Markov Models (PHMM) to encode the non-linear part of
the trajectory. PHMM allows us to learn from multiple demonstrations, automatically
segment the observed skill based on the statistical information, learn the relations
between these segments and the environment properties if possible, and provide variance
information that can be used to deduce the certainty of the learned model for the
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corresponding segment. We further encoded the observed force-feedback trajectories
using PHMMs, built force-feedback models for each learned skill and exploited these
models, adding a new feedback term to DMP to achieve compliance when needed. Our
parametric model was first verified in a simulated obstacle avoidance task and then
in a real cabinet opening task. Finally, it was used in a pick and place task with a
real robot that involves obstacles of different heights. The robot successfully learned
how to generate the trajectory based on the heights of the obstacles, in which parts
of the execution it requires to accurately follow the generated trajectory, and finally to
automatically allow human-robot collaboration exploiting the learned haptic feedback
models. After providing a brief overview of the related work in the next section, we will
present the details of our proposed model and the experiments performed in sections 3
and 4.

2. Related Work

Learning from demonstration (LfD)®> has been suggested as an efficient and intuitive
way to teach new skills to the robots, where the robot observes, learns and imitates the
actions demonstrated by the human tutors. LfD has been applied to various robotic
learning problems including object grasping and manipulation.*? 2 Among others,
learning methods that are based on dynamic systems® and statistical modeling (with
GMMs® and HMMs'?) have been popular in the recent years.

Dynamic Movement Primitives (DMPs),% encode the demonstrated trajectory as a set
of differential equations, and offers advantages such as one-shot learning of non-linear
movements, real-time stability and robustness under perturbations with guarantees in
reaching the goal state, generalization of the movement for different goals, and linear
combination of parameters. The parameters of the system can be learned with different
advanced algorithms such as Locally Weighted Regression' and Locally Weighted
Projection Regression.'® Statistical modeling techniques generally use probabilistic
models such as Gaussian Mixture Models? !¢ or temporal probabilistic models such as
Hidden Markov Models!3 to encode the motion from multiple demonstrations. They learn
the important features of the demonstrated motions and model the statistical regularities
within the spatial data. Encoding the statistical properties, for example variation and
correlation information in the movements, have been proved to be useful, for example in
modulating the system based on various constraints such as kinematic and task based
ones.'® Despite such advantages, statistical methods do not directly provide robustness,
generalization and guaranteed convergence to goal position as in DMPs.

In DMP models, the non-linear function encodes the shape of the trajectory whereas
the other terms makes the trajectory attain a goal position from an initial position
within a desired duration. Therefore DMP can respond robustly to the static or dynamic
changes of the movements’ initial or goal positions while preserving its specific shape
in simple tasks reaching to an object while avoiding an obstacle. However, in more
complex tasks such as opening the door of a cabinet from different handles or pouring
from a container with amounts of water, only preserving the shape of the demonstrated
trajectory might not generate a trajectory capable of accomplishing the task. In such
cases, we need to create trajectory models that depend on some parameters extracted
from the environment such as the position or weight of the objects.

Zhou et al.'” used a simple 2-d obstacle avoidance task to show that standard DMP
approach is not designed to learn from multiple trajectories and therefore cannot encode
the important parts of multiple demonstrations. In this task, a motion that brings the
end effector from one side of an circular obstacle to the other side is taught to the robot.
The shape of the trajectories with a number of different goal positions are shown and
a DMP model for these trajectories is extracted. When the goal position of the DMP
model is changed to a new goal position that is roughly symmetrically on the other side
of the initial position, the created trajectory fails to avoid the obstacle. To deal with
this problem, a parametric representation that relates the obstacle size to the action
should be learned. Zhou et al. developed a method that performs LWR by defining



4 Compliant Parametric Dynamic Movement Primitives

a new objective function dependent on the environment restrictions and parameters,
and that uses a model-switching algorithm to be able to train over all the parametric
space. While this is an effective algorithm for the corresponding task, we would like to
combine the advantages of DMP based approaches with the information provided by
statistical modelling techniques such as the variance in the demonstrations. Ude et al.!®
used LWR and GPR methods to compute new DMP based trajectories given parameters
that describe the characteristics of the action, such as the goal point. Their method could
be generalized with complex trajectories for both periodic and discrete movements. We
would like to learn the relation between the trajectories and any related aspect of the
environment. Pervez et al.!” learned a separate GMM for each demonstration and mixed
the separately learned GMMs to generate trajectories for new task parameter values.
Instead, we learn one base HMM and a weighted additive term that changes the mean of
the HMM Gaussians given the task parameters. In addition, we exploited the variance
information to let the system to enable human-robot collaboration in this paper.

In order to enable physical collaboration, the robot was required to learn haptic
feedback models that encodes the default predicted force feedback measured during
execution of the corresponding skill. Memorized force and tactile profiles have already
been successfully utilized in modulating learned DMPs in difficult manipulation tasks
that contain high degrees of noise in perception such as grasping and in-hand
manipulation of objects from incorrect positions or flipping boxes using chopsticks.?%2!
However, we believe that rather than memorizing one single haptic profile for a skill,
learning general multi-model sensory models might provide us with more generalizable
and robust manipulation skills. In this paper, we modelled the haptic feedback
trajectories with PHMMSs and used those models in an additional coupling term similar
t0.20 Chu et al. also learned such multi-modal models based on Hidden Markov Models
from temperature, pressure and fingertip information for exploratory object classification
tasks,?? however the learned models were not used to adapt any further action execution.
Latent Dirichlet Allocation®® and recently deep networks** were used to learn multi-
modal models from different sensory information such as temperature, pressure, fingertip,
contacts, proprioception, and speech; however these models were used only to categorize
the sensory data without any effect on action execution. More recently, Kramberger et
al. investigated the same problem of generalization of force/torque profiles for contact
tasks.?> In their work, these profiles are modeled by Locally Weighted Regression (LWR)
which has local generalization capabilities, hence successful at intermediate query points.

Compliant Parametric Dynamic Movement Primitives (CPDMP) can learn the non-
linear shaping terms dependent on a specific parameter of the environment and execute
the predicted trajectory of a new environmental configuration by taking into account
the variances, switching back and forth its compliance mode. In CPDMP, the non-linear
terms are learned by Parametric Hidden Markov Models (PHMM).?® To the best of our
knowledge, PHMM was used once in robotics applications for a liquid pouring task to
create a model that links the joint space and sensory feedback information of the robot to
the amount of the liquid.?” However, their work consisted of learning the trajectory itself
by PHMM and did not address robust execution to dynamical changes. We additionally
exploited the covariance matrices of PHMM in order to capture the uncertainty in the
corresponding part of the learned skill and in order to allow human-robot interaction.

3. Methods

In this section, we will first describe Dynamical Movement Primitives (DMP) method, its
default formulation as a set of differential equations, how complex movement trajectories
are encoded with a non-linear shaping function, and how this function might be learned
from demonstration. Next, we will provide the details of our proposed method, Compliant
Parametric Dynamic Movement Primitives (CPDMP), where we propose a parametric
version of the shaping function that also encodes the statistical information in the
movement trajectory of multiple demonstrations of the learned action. Additionally, we
add a force-feedback coupling term that enables the robot to learn the force/torque
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trajectory expected to be measured during execution of the movement trajectory, and to
exploit it for reacting towards unexpected perturbations.

3.1. Dynamic Movement Primitives
DMPs can be interpreted as linear spring systems perturbed by external forcing terms.
For one degree of freedom, DMP is composed of the following set of differential equations:

70 =K(g—x)— Dv—K(g—x0)s + Kf(s) (1)
TE =0 (2)

where, the movement starts from x, position and ends at goal position g. z, &, and
¥ correspond to the position, velocity and acceleration of the system. The changes in
velocity and acceleration are scaled with a constant 7. K and D are the proportionality
and damping constants, respectively. D is set to 2v/K to make the system critically
damped. f(s) is a non-linear function that encodes the shape of the trajectory. Finally,
s is a phase variable that monotonically decreases and converges at value zero:

TS = —Qs (3)

where « is a constant representing the convergence rate of the phase variable from 1
to 0.

The first three terms in Eq. (1) allows the system to act as a spring damper system,
guaranteeing to reach to the goal position and/or tracking a moving goal. The influence
of f(s) function depends on the value of s and its influence saturates as s approaches
to zero. Therefore, the system is guaranteed to reach to the goal position independent
of how f(s) encodes the non-linear trajectory or even if the goal position changes in
the beginning or during action execution. The system also preserves its shape when the
initial and final positions change or the system is perturbed during execution. Finally,
one can make sure simultaneous evaluation of multiple degrees of freedoms or multiple
systems by integrating the same phase variable in the corresponding DMPs in parallel.

Non-linear shaping function: f(s) shaping function is a non-linear function that encodes
an arbitrarily complex trajectory of a demonstrated movement. To learn the movement,
x(t) is recorded. Next, v(t) and o(t) are calculated for each time step t. s(¢) is calculated
using an appropriately set 7 value. Finally, Eq.(1) is re-arranged so that the value of f(s)
is calculated as “target f(s)” using s(t), x(t), v(t), and 0(t):

frarget(s) = —(g — ) + (g — xo)s + m;im (4)

The problem of learning of the movement trajectory is now transformed to learning
of the function f(s) using the sample points calculated above.

Locally Weighted Regression: The f(s) function can be encoded as the weighted sum of
m radial basis functions:

B S wihi(s)s
1) = =500

where Y, 1;(s) is a normalizing term. 1); corresponds to the i*" radial basis function in
the following form:

()

¥y = exp(—hi(s — ¢;)?) (6)
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where ¢; and h; are the center and the bandwidth of the corresponding basis function,
respectively. The multiplicative term, the phase variable s, ensures that the influence of
the non-linear shaping function vanishes towards the end of the movement, ensuring
reaching to the target position. The learning problem can be simplified by setting
centers and bandwidths manually. In this case, the centers are logarithmically distributed
between 0 and 1, and bandwidths are set to values inversely proportionally to the
centers as follows: h; = m/(c?). The weights {w;,w,,...w,,} that encode the shaping
function of each particular demonstrated movement, on the other hand, can be learned
by linear regression. The matrix form of these weights and the non-linear function for
one demonstration are as follows:

ftarget(81> w1
f= W= | ... (7)

ftarget(ST) wN

Yi(s1) o0 _¥n(s1) o
Ziv Pi(s1) ! Zjv pi(s1) !
Y1 (sT) S .. Y (sT)
va Gils) L va Yi(sT)
Based on the linear relationship between these weights, pseudo-inverse of matrix X is
taken and multiplied with f to find the weights:

ST

Xw =f (9)

w = (X"X)"'X"f (10)

3.2. Our proposal: Compliant Parametric Dynamic Movement Primitives (CPDMP)
In this paper, we extend the original DMP as follows:

¢ We model the non-linear shaping function with a parametric temporal probabilistic
method that can encode the trajectory of the same movement primitive executed several
times. For this we use Parametric Hidden Markov Model (PHMM) (Section 3.2.1).

e We integrate a coupling term that enables the system to react to unexpected
perturbations that can be measured by force/torque sensors (Section 3.2.2).

3.2.1. Non-linear shaping function with PHMM. We extend the non-linear shaping
function to a parametric form using a PHMM based parametric model instead of weighted
sum of radial basis functions, as follows:

T0=K(g—2x)— Dv—K(g9—x0)s+ K[f(Op,s) (11)
where

e 0,, corresponds the set of parameters that affect the movement trajectory, and
* f(0,n,s) corresponds to the new non-linear shaping function that takes 6,, as input
parameter along with the phase variable s.

A standard HMM X of N hidden states, is composed of the prior distributions 7;, the
transition probabilities a;; and the observation probability distributions b; :

)\ — {7T7L7 aija bz}N

ij=1
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For continuous data, observation distribution b; is a single multi-variate Gaussian
distribution, b;(x) = N (x|, X;), for each hidden state i. In this model of a single
trajectory, some part of the trajectory is covered by each Gaussian, and state index ¢ is
incremented along with the evolving trajectory. When multiple trajectories are encoded,
each Gaussian encodes the variance of the corresponding part of the training data.

PHMM extends HMM by including a global parametric variation in the observation
probabilities of the HMM states. The mean of the Gaussian distribution of each hidden
state is calculated taking into account the given parameter. In a linear model, the mean
of the Gaussian is calculated by adding the weighted linear sum of the parameters 6 to
a baseline mean:

1,(0) = W0 + i (12)

where 6 is the parameter vector that might include one or more parameters, fi; is
the baseline mean of the Gaussian for the observation probability distribution of the
hidden state i, and W; is the weight matrix. As an example, given a number of obstacle
avoidance demonstrations, if the observation is 3d position trajectory of the end effector
and the parameters are the height and width of an obstacle, @ vector would be 2; f; and
w;(0) vectors would be 3 and W; matrix would be 3 x 2 sized. Learning a PHMM model
corresponds to learning the weights (W;) and the baseline means (f1;) of each hidden
states in addition to standard HMM parameters such as the prior probabilities of the
hidden states (7;) and the transition probabilities between states (a;;).

Expectation Maximization algorithm described in?® is used for training. In the
expectation step, forward-backward algorithm?® is used to compute the probability
Yii = P(q: = i|x, A), being in the hidden state ¢ at time ¢ given the entire sequence of
@ and the current parameters (A) of the PHMM. In the maximization step, the PHMM
parameters, i.e. m;, a;;, W, and @,;, are updated. While the first two parameters are
updated following the standard maximization step of the EM algorithm (see®® for details),
the weight matrix and base mean vectors are updated in a group as in.?° For this, two
new variables are defined for each hidden state i:

Z; = [W; ] Qp = {911@}
such that p,;(0) = Z;Q4. Only Z; is updated using each observation sequence xj and
the corresponding €2, where k stands for the index of the observation:

Z; = [Z’)’k,t,iwk,tﬂf] [Z’)’k,t,iﬂkﬂz]
k,t k.t

-1

Once the means are updated, the covariance matrices of the Gaussians for the hidden
states are updated in the standard way:

3= Z M(ka — i (Ox) (Xk 6 — Hi(ak)T
k.t

¢ Yk,ti

In this EM iterative method, the parameters of the PHMM are initialized by first
training a global non-parametric HMM using the same EM method. The only difference
in the global case 6, is set to 1. To initialize the means of the global HMM, we used
k-means algorithm.

Note that in this formulation, the parameter 8 only affects the mean, and it is assumed
that the variance of the observation probability distribution does not depend on this
parameter.

When the non-linear function of DMPs are learned by PHMM through a dataset that is
composed of demonstrations, each having at least one parameter, we obtain a parametric
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model of the non-linear function. Given a novel configuration of the environment, the
parameter from this situation is extracted and is given to the PHMM model to compute
the new means of the Gaussians of the hidden states. As a result, parametric dynamic
movement primitives adapting to the changing environments are created.

Movement Generation: Gaussian Mixture Regression (GMR) method® is used to
compute the movement trajectory. When a new parameter is given to the model retrieved
by PHMM, each hidden state produces new multivariate Gaussian distributions. The
mean vector of these distributions p; and the covariance matrix ¥;, can be expressed as
partitioned matrices by splitting the input & and output y as:

Y »ie sbv

According to the GMR,?° the output vector can be found by inserting the input vector
and the Gaussian distribution acquired from the PHMM as follows,

w= M| == |5 S (13)

N

y = hlpf + 3¢ (2F) " (x — pf)] (14)

i=1

Here h; are the weights of the marginal distribution of the input and are calculated as
follows

 N(mypg, 3
NN N, EEe)

where N (xz; p¥, X¥*) is the multivariate Gaussian density function of the input.
With these values, equations (1) and (2) are used to calculate the change in position
and the velocity and these changes are reflected to generate the corresponding trajectory.

(15)

3.2.2. Compliance in Parametric DMPs. In order to react to external forces, we
further extended the PDMP by integrating a force-feedback coupling term. PHMM-
based shaping function and force-feedback coupling term is incorporated in the DMP
formulation as follows:

70 =K(g—x)— Dv—K(g—x0)s+ Kf(0,,s)+((0,s) (16)

where

* 0y correspond to the set of parameters that affect the measured force/torque feedback
during execution of the movement, and

* ((#y,s) correspond to the force-feedback coupling term that enables the system to react
to unexpected external forces based on inputs 6y and s.

In order to react to unexpected external forces, the system requires to learn the forces
that are expected to be observed during execution of the corresponding primitive, and
encode these observed forces as desired forces (Fyes(6y, s)). During execution, the system
computes the difference between actual and desired forces, generates an error based on
this difference, and exploits this error to react to the perturbation in different ways.
The system might try to minimize the error or allow the external forces to affect the
movement depending on the task. PHMMs are used to encode desired forces that is
denoted by Fy.s(0f,s). A general form of the proposed coupling term, which uses a
parametric function of §; as opposed to the non-parametric averaging method proposed
by Pastor et al.,?° is given as follows.

<(9f, S) = B KlJT K2(F — Fdes(9f, S)) (17)

sensor
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With this formulation, an error is generated by calculating the difference between the
current force F and the desired force Fges in task-space, i.e. the 6D wrench space of the
end-effector. This error is reflected to the movement using K; and K, which are positive
definite gain matrices in task space and joint space, respectively; and JL__ = which is
the transpose of the Jacobian with respect to sensors by which the forces are measured.
B parameter is used to change the way the system reacts to the external forces. Note that
both f(0,,,s) and Fus(0;,s) are encoded as parametric temporal probabilistic models
with PHMMSs that is detailed in Section 3.2.1.

Depending on the task, the system can be configured to react to the external forces
in different ways. 8 parameter and K; and K, coefficients should be adjusted for this.
In this section, we will describe two different ways of reacting to external forces:

Minimize force-feedback error to correct mistakes in the movement trajectory: The robot,
while executing its action, might make small mistakes in generating its movement
trajectory. For example, in an action which involves reaching in order to grasp an object,
the target position might be set incorrectly due to noise in perception. Then, the force
feedback measured while touching and grasping the object would be different from the
expected one. In such cases, the learned force feedback trajectory models can compute
how much the movement deviated from the desired one, and how to correct the movement
based on this deviation. For this, the force-feedback coupling term ¢ can be set as follows:

C =1 K]_JT

sensorK2 (F - Fdes) (18)
where § was set to 1, and K; and Ky are set manually depending on the task. We
already studied such correcting actions in3' where our system exploited those models to
correct the perturbed movements during executions with the aim of generalizing to novel
configurations.

Ezxploit force-feedback error to comply with the external forces: In some tasks, the
interference of an external agent, i.e. a human or another robot, might be required for
successfully achieving the goal. In such cases, rather than minimizing the force-feedback
error as above, the system can exploit the error to compute the signals provided from
outside, and change the ongoing movement trajectory complying with these signals. In
such a scenario, the force-feedback coupling term ¢ should be set as follows:

C = 7K1JS’I(‘ensorK2(F - Fdes) (19)
where 3 was set to -1, and K; and K are set to identity matrices.!

Such a setting practically brings the robot to compliant mode. In our study, we would
like the system to learn which parts of the movement require compliance and which parts
require stiff movement autonomously. This information is designed to be captured directly
from demonstration. If part of the demonstrated movement always follows the same path,
in other words the movement has low variance, the robot can generate the trajectory and
follow it accurately. On the other hand, if one part of the demonstrated movement follows
different paths, i.e. the corresponding segment of the movement has high variance, the
robot might conclude that there is high-uncertainty in the corresponding part and triggers
compliance mode automatically to allow external help.

Therefore, we propose to use the variance information provided in some parts of
the demonstrations as a measure of compliance for the corresponding part. When the
variances are high, we expect the robot to behave more compliant, so that the human
can intervene and help the robot to complete its task. As mentioned before, PHMMSs can
automatically segment trajectories taking into account the local variance information,

! While the influence of both forcing function and force-feedback term will asymptotically vanish towards
the end of the movement, our framework does not provide any stability guarantees due to integration of
Eq. (19). In the experiments, we observe that the generated movement were stable around the region of
the demonstration instances.
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and can provide the required variance information free of charge. Therefore, each hidden
state 7 in the non-linear shaping function f(6,,,s) that generates movement trajectory
is associated with a discrete compliance value, and the compliance coefficient 5 is be set
accordingly:

(20)

0 o.w.

B, = {—1if|§]gk > 0,3 5,k € {z,y,z}

where 3 in Eq. (17) is set to (; during generation of the i*® segment and o corresponds
to a variance threshold. In other words, in case any component of covariance matrix >;
exceeds the threshold o;, the system decides to run in compliant mode in ith hidden
state, exploiting the error computed from force feedback model.

4. Experiments

In this section, after showing a proof-of-concept verification of our method in a 2D
simulated obstacle avoidance task (Section 4.1), we will provide the generalization
capability of our method with a real robot, first in response to change in target position
(Section 4.3), and then in response to other changes in the environment (Section 4.4).

4.1. Target position change in simulated obstacle avoidance task

In this section, we show the advantage of our method (CPDMP) over standard DMP in
its capability of preserving the shape of the trajectory while generalizing the trajectory
to different target positions. A simulated 2d obstacle avoidance task!” is used for this
purpose. The aim in this task is to learn avoiding from an obstacle while moving from
an initial position to an arbitrary target position. In Fig. 1, the gray ellipse shows the
obstacle, (0,0) position is the initial position of the movement, and the red round points
on the top correspond to the targets of the movement. The system is provided one
demonstration trajectory (red line) for each red target point. The x coordinate of the
end position is used as the 6,, parameter and a PHMM model is trained to learn f(6,,, s)
in the CPDMP formulation, Eq. 11. The force-feedback coupling term is not considered
in this task. After learning the movement from these multiple trajectories, the system
is requested to generate a new trajectory for a target point that is placed to the left
side of the observed target points. In order to compare CPDMP with the goal-point
generalization capability of DMPs, a DMP model (Eq. 1) was also trained from these
demonstrations. The weights of the radial basis functions (Eq. 5) were learned using
LWR taking into account the forcing terms of all four trajectories. As shown in Fig. 1(a),
the trajectory learned by DMP fails to encode the important part of the demonstrations.
The non-parametric DMPs are not originally designed to learn from multiple trajectories
with different goal points, therefore LWR probably learned an average representation
from the trajectories of the shaping functions. Therefore, while roughly preserving the
shape of the movement, it failed to avoid the obstacle. On the other hand, CPDMP, when
parameterized with the position of the target point, can successfully avoid the obstacle.
The blue line in the Fig. 1(b) shows that CPDMP avoids the target successfully, keeping
sufficient distance from the target.

4.2. Comparison with TPGMM

In the previous subsection, we showed that CPDMP can deal better with demonstrations
with different goal positions compared to the non-parametric DMPs. In this subsection,
we compare the capabilities of the underlying PHMM representation of CPDMP
with a parametric representation that also encodes the statistical information of
multiple trajectories, namely Task Parameterized Gaussian Markov Mixteure Models
(TPGMM).*? Assume that two sets of trajectories that pass around obstacles of two
different sizes are provided to the system in a 2 dimensional setting. Half of each set of
the trajectories traverses from one side of the obstacle and the other half passes around
the other side.
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Fig. 1. (a) Trajectories that are produced for a single end point close the one shown with a cross,
with a DMP model learned from the trajectories going to 4 different end positions. Even though all the
demonstrations avoid the obstacle, newly produced trajectory cannot avoid the obstacle. (b) the PDMP
model that is learned with the end positions of the demonstrations succeeded to avoid the obstacles, no
matter how close they are to the single point shown with the cross.

TPGMM (Direction encoded in ) PHMM (Direction encoded in 6)

10 +

Fig. 2. PHMM and TPGMM models were trained with the solid lines and the corresponding parameters
provided in the legend. The magnitude and the sign of the parameter (6) encodes the width of the obstacle
and the direction of the demonstration. The Gaussian means are shown with the black dots. As shown,
both models could produce trajectories that can pass from both sides of a new obstacle of width of 20
units.

In the first experiment, both the width of the object and from which side the traversal
occurs were provided as the parameter along with each trajectory. Note that we focus
only the trajectory encoding and generation with PHMM and TPGMM, therefore we will
refer to the parameter with variable 6. As shown in Fig. 2, both PHMM and TPGMM
produced trajectories that can pass from both sides of a new obstacle of larger width.2

In the second experiment, direction of the demonstration was not provided to the
system and therefore only the width of the obstacle was encoded in the parameter of
the corresponding demonstration. TPGMM in this case failed to generate trajectories

2 The (0,0) and (2,0) positions are set as the first and the second candidate frame of references in
training TPGMM. Note that six Gaussians were used in TPGMM training as the TPGMM EM algorithm
implemented in the Programming by Demonstration Library3 could not encode the trajectories with
higher number of Gaussians. While more smooth trajectories could have been generated by TPGMM
with higher number of Gaussians, our focus in this analysis is not related to smoothness but it is rather
about the capability of generating trajectories based on given demonstrations and parameters.



12 Compliant Parametric Dynamic Movement Primitives

TPGMM (Direction NOT encoded in 8) PHMM (Direction NOT encoded in 8)
o 6=15 04 6=15 P
8=10 6=10 Pt T
8=15 f— 8=15 o —_— \\
8=10 ; 8=10 s . o AN
L . i S . I B o
54 --- 8=20 7 = == - 54 --- 8=20 s == ~
L :
» N\ e *
L/
O R S T e 04
L]
.| / ‘\\o ”
-5 S S — - =5 N T ¢,
sy i . . s
— \\\ L L
~ -
- -
—10 -10 e —— -
-1 0 1 2 3 4 -1 0 1 2 3 4
(a) (b)

Fig. 3. PHMM and TPGMM models were trained with the solid lines and the corresponding parameters
provided in the legend. The Gaussian means are shown with the black dots. The parameter (0) encoded
only the width of the obstacle. As shown, only PHMM could produce trajectories that can pass from
both sides of a new obstacle of width of 20 units.

for the new parameters as all the Gaussians were used to reproduce the trajectories
with GMR (Fig. 3a). In the PHMM reproduction, in order to benefit from the state
transition probabilities, we implemented a simple heuristic that extracts the disjoint
chains of states starting from the start state, and provided the Gaussians of the chains
separately in GMR trajectory reproduction phase. As shown in Fig. 3b, this approach
allowed PHMM to produce trajectories that passed from both sides of the new obstacle?.

The state transition probabilities encoded in the PHMM are provided in Fig. 4a. The
self-transition probabilities were not displayed in the figure for clarity. As shown, starting
from the hidden state 2, two different chains were generated, and the Gaussians of the
corresponding hidden states were provided separately in GMR trajectory reproduction.
Fig. 4b shows the variances of the initial non-parametric HMM by the gray ellipses,
the means of the Gaussians for different parameters with green and red dots, and the
variances of the Gaussians of the final PHMM with blue ellipses.

4.8. Handle change in cabinet opening task with Bazter robot

Our experimental setup consists of Baxter robot which has two 7 degrees of freedom
and a cabinet. The door of the cabinet is attached to the cabinet with a hinge joint,
and 5 different handles are placed in a row on the door with 5 cm intervals. As shown
in Fig. 5, a 3D printed hook is mounted on the wrist of the left arm of the robot and
clamped to one of the handles in the beginning of the movement. The cabinet opening
skill was demonstrated to the robot by kinesthetic teaching, i.e. by physically moving
the end-effector of the robot. The position of the handle relative to the robot base in the
lateral axis is used as the 6,, parameter and a PHMM model is trained to learn f(6,,,s)
in the CPDMP formulation, Eq. 11. The force-feedback coupling term is not considered
in this task. Demonstrations with all handles were used for learning except with the one
in the middle. In each demonstration, 3D position trajectory of the end effector in the

4 Note that one can attempt to extract the state chains from the learned TPGMM with additional steps.
For this, clustering that takes into account means and variances of the Gaussians can be applied to find
set of Gaussians that are close to each other. However the result would highly depend on the clustering
algorithm, where another pass of hyper-parameter tuning (the number of clusters) model tuning (the type
of the clustering method) should be applied. Another way to extract the chains from the learned TPGMM
is to estimate the pairwise transition frequencies by counting the number of transitions between the
corresponding Gaussians; and use these estimates to form chains. While such an approach that first finds
the Gaussians and then estimates the corresponding transition probabilities can provide similar results
in this particular example, TPHMM is a method that particularly serves this purpose in a principled
way: through co-joint optimization of the transition probabilities and the Gaussian means and variances.
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Fig. 4. Analysis of PHMM training, encoding and reproduction. (a) The self-transition probabilities are
not displayed for clarity. Transition probabilities from 4th and 8th states to the initial state (2nd state)
are non-zero as the eight trajectories were concatenated back-to-back for PHMM learning. (b) Solid and
dashed lines correspond to the demonstrations and reproductions, respectively. Gray ellipses, red/blue
dots and blue ellipses correspond to initial HMM variances, final parameterised means and final PHMM
variances, respectively.

task space was stored along with the corresponding time information. 7 different hidden
states were used, and K is set to an empirically found value, 5000.

Fig. 6a shows the centers of the density functions of each hidden state produced by
CPDMP. As shown the centers are related to the shaping function of the demonstrated
trajectories based on the given parameter, the position of the handle. As mentioned
before, in this paper, the covariance matrices of the Gaussian functions are found by
applying non-parametric HMM method to the complete data, and are set to the same
values for each Gaussian function of the corresponding hidden state. With this learned
model, the novel position of the third handle, which was not included in the training set,
is given as the parameter to the robot. New centers of the hidden states are calculated
for this parameter. As shown in Fig. 6b, CPDMP could generate a trajectory that
matches well with the reference movement. When the generated trajectory is executed
by the Baxter robot, the cabinet was successfully opened from the third handle. Fig. 7
shows a number of snapshots from Baxter’s performance, and provides the link to the
corresponding video.

Fig. 5. The cabinet opening task. a) provides a snapshot from kinesthetic teaching, b) shows the handles
attached to the door of the cabinet, c¢) provides a top-down snapshot of the demonstration of the cabinet
opening movement from the first handle, and d) gives a snapshot from Baxter’s autonomous execution.
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Fig. 6. (a) The shaping function of the trajectories taken from all handles and learned PHMM model.
The radius and center of the ellipses, are respectively expressing the center and variance of the Gaussian
density functions produced by the hidden factors. (b) The graph of the trajectories in x-y plane to
open the cabinet door with not demonstrated third handle produced with the CPDMP. The trajectory
produced with CPDMP follows a similar path to the reference trajectory.

Fig. 7. The application of the trajectory produced by the learned PDMP model that is given initial
position of the 3rd handle as start pose as parameter.

See the video link : https://youtu.be/GDIWFIIBCsA

4.4. Pick and place an object avoiding obstacles, allowing human-robot interaction

Our final experiment is designed to evaluate the full range of the capabilities of our
proposed method. With this experiment, we aim to verify the capabilities of our system in
parameterizing the movement trajectory based on environment properties and exploiting
the encoded variances observed in different segments of the movement trajectory for
compliant control.

Setup: Experimental setup consists of two U-shaped toy blocks with varying heights,
a soft round toy, a basket and the Baxter robot as shown in Fig 8. The wrench
measurements at the end-effector of the Baxter are provided by the built-in system
of the robot through integrating individual joint efforts. The pick and place task requires
that the robot’s gripper starts moving from one side of the table (from the right side
from the perspective of the robot), passes through the narrow space of the first block
taking into account the height of the block, picks up the round toy, and passes through a
wider space of the second block taking into account its height as well, finally placing the
toy into the basket. While the initial and final position of the robot gripper are always
same and the gripper should go through the apertures without collision, the object to be
picked up can be placed in various positions between the two blocks. This task simulates
situations where the object position cannot be reliably obtained and cannot be explicitly
communicated to the robot, for example when the object is inside an opaque bag. In such
situations, a human intervention is necessary to locate the object and help the robot to
pick up the object by physically bringing the gripper over the object. We would like
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the robot to autonomously detect this from the unexplainable high-variance observed
in the corresponding segment of the motion. Moreover, the height of the blocks might
be different and this information should also be taken into account during learning and
executing the skills.

The pick and place skill is taught to the robot in three different configurations, i.e.
with three different block heights. In each configuration, the two blocks have the same
heights, the round toy is placed to 3 different positions to simulate the uncertainty. Fig. 9
shows these configurations. The elevation of the gripper (position along z axis) for these
trajectories are shown in Fig. 10 with dashed lines. As shown, each trajectory starts from
the same initial position and ends at the same final position. The gripper is elevated to
certain points depending on the height of the blocks, as visible from their values during
[5-10] and [20-25] seconds. The gripper is brought close to the table at around second
15 to pick-up the toy. Fig. 11 shows the lateral movement (along the x axis) of the
gripper during demonstrations with dashed lines. As shown, the trajectories of the nine
demonstrations along the x axis are very close to each other except when the object was
picked up from a different position each time.

Our system is required to learn the force-feedback model of the corresponding pick and
place skill. Therefore the trajectories that were obtained during kinesthetic teaching were
replicated by the robot without human intervention. The force-feedback trajectories that
were measured during these replications were used to train the PHMM force-feedback
models. 0y parameter was set to a fixed value in the training as the differences in the

Fig. 8. Baxter and the pick and place task. The gripper passes through the first narrow aperture, picks
up the red object, passes through the second wider aperture and places the object on the table.

(a) Block height: 14.5 cm. (b) Block height: 17.5 cm. (c) Block height: 20.5 cm.

Fig. 9. Setups for demonstration of the pick and place task.
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Fig. 10. The elevation change in the gripper during kinesthetic teaching and autonomous execution. The
dashed lines correspond to the position of the gripper along the z-axis obtained during pick and place
demonstrations. Three different demonstrations were provided for each of the training environment. The
solid line corresponds to the movement trajectory produced by the CPDMP method in the environment
with blocks of novel height.

noisy wrench readings of the Baxter robot obtained from different obstacle heights or
object weights were not expected to have a significant effect on this task.

The height of the block was used as the 6,, parameter of the CPDMP that learns a
general movement model from the provided nine demonstrations. The position of the
object is not provided to the system. The compliance threshold o is empirically set to
1.0 in Eq. (20). Our CPDMP model is required to both encode the trajectories based
on the height of the blocks and learn the movement segments that exhibit high variance
during object pick up.

Results: The CPDMP model, after learning from the demonstrated 9 trajectories, is
requested to produce a trajectory in a new configuration where the height of the blocks
was set to a new height: 23.5 cm. The z component of the generated trajectory is
shown with the solid line in Fig. 10. The results show that the system can generate
a trajectory that moves the end effector through apertures avoiding collision with the
blocks. Furthermore, the variance in the movement of the predicted trajectory is high at
the pick-up location, and low while passing through the apertures of the blocks.

We further examined the details of the generated trajectory. The solid line in Fig. 11
shows the predicted trajectory, and the ellipses show the predicted means and variances
along with their corresponding eigenvalues in red boxes. Recall that the gaussian ellipses
correspond to the observation probability distributions of the non-linear term. Their
means are shifted up/down in the figure, keeping the time coordinate constant, in order
to be visualized clearly and to be compared with the trajectory itself. The variances of
the gaussians in x direction, hence the eigenvalues in that direction, are higher in the
regions where the demonstration variance was high, i.e. objects were picked up from
different locations, resulting in autonomously switching to compliant mode.

We executed the learned pick and place behavior with the novel block height where
the object is placed to an arbitrary position. The robot was able to complete the task
successfully: the movement trajectory adapted to the height of the block, the gripper
automatically remained stiff and followed the learned trajectory accurately while passing
through the apertures, and switched to the compliant mode during object pick-up.
Remaining stiff while passing through the narrow gap was important and required as
the noisy force/torque sensors of the Baxter might read erroneous external forces that
would result in inaccurate movement due to the force feedback coupling term, and causing
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Fig. 11. The lateral movement of the gripper during kinesthetic teaching and autonomous execution.
The dashed lines correspond to the position of the gripper along the x-axis obtained during pick and place
demonstrations. Three different demonstrations were provided for each of the training environment. The
solid line corresponds to the movement trajectory produced by the CPDMP method in the environment
with blocks of novel height. The ellipses correspond to the observation probability distributions of the 8
hidden factors. As shown, in the initial phase of the movement (when the gripper passes through the first
aperture) the model start with small variances, during object pick-up that corresponds to the fourth and
fifth hidden factors the variances become larger, and in the rest of the movement the variances become
smaller again.

Fig. 12. Execution of the learned pick-and-place skill with CPDMP. The object is placed to an arbitrary
position. (a) Initial gripper position. (b) The gripper follows the learned trajectory accurately in the stiff
mode due to the low variance of the hidden states encoded in HMM (see the first three hidden states
in Fig. 11) also adapting to the novel height of the block. (c) The robot switches to compliant mode,
enabling the DMP force-feedback coupling term that computes the error between predicted and actual
forces and moves the end-effector in the direction of the external forces. (d) A human physically now can
scaffold the movement of the end effector while it is in the compliant mode, and positions it so that the
red object can be picked up. (e) The robot switches back to its stiff and accurate movement mode. (f)
The object is placed to the target position, inside the basket.

See the video link : https://youtu.be/VACw5_DNQeU

collision with the blocks. On the other hand, when the robot switched to the compliant
mode between 12th and 17th seconds due to large variance, the force-feedback coupling
term that generates an error from the difference between predicted and measured forces,
changed the path of the movement towards the force exerted by the human. This allowed
the human to control the robot gripper (only) during that period and scaffold action of
the robot: The human placed the gripper over the red object and the object is successfully
picked up by the gripper. After 17th second, as the variance of the corresponding segment
was low, the robot automatically switched back to stiff mode, which allowed the gripper
to pass through the second aperture, placing the object to the target position. Please see
the execution snapshots and the link to the corresponding video in Fig. 12.
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5. Conclusion

In this paper, we proposed an advanced manipulation framework that learns complex
action trajectories along with their haptic feedback profiles. Our framework extends
the Dynamic Movement Primitives (DMPs) method with a new parametric non-
linear shaping function and a novel force-feedback coupling term. The trajectories of
the movement control variables and the force/torque measurements are encoded with
parametric temporal probabilistic models, namely Parametric Hidden Markov Models
(PHMMs). PHMMs enable autonomous segmentation of a taught skill based on the
statistical information extracted from multiple demonstrations, and learning the relations
between the model parameters and the properties extracted from the environment.
Hidden states with high-variances in observation probabilities are interpreted as parts of
the skill that could not be reliably learned and autonomously executed due to possibly
uncertain or missing information about the environment. In those parts, our proposed
force-feedback coupling term, which exploits the deviation of the actual force feedback
from the one predicted by the force-feedback PHMM, acts as a compliance term, enabling
a human to scaffold the ongoing movement trajectory to accomplish the task. Our
method is verified in a number of tasks including a real pick and place task that involves
obstacles with different heights. Our robot, Baxter, successfully learned to generate the
trajectory taking into account the heights of the obstacles, move its end effector stiffly
(and accurately) along the generated trajectory while it passes through apertures, and
allow human-robot collaboration in the autonomously detected segments of the motion,
for example when the gripper picks up the object whose position is not provided.

The compliance in the pick and place task is not related and does not benefit from any
parametric relation in the environment, and therefore the force-feedback model was not
trained with any particular parameter. As an example, if the end-effector had carried a
heavy object that significantly changed the measured forces when the robot was required
to be compliant, the weight of the objects should have been used as the parameter to the
model. In a previous study,?! we showed the advantage of using the weight of the object
as the parameter to the force-feedback model in an object pushing task. While we had
used PHMMs to encode the force-feedback trajectory, the robot was provided only one
trajectory to learn: the movement of the end-effector along a straight line while pushing
an object. For this we had encoded the movement with a non-parametric model, namely
normalized sum of radial basis functions as in standard DMPs, whereas in the proposed
framework, we used a parametric formulation for encoding the movement, and exploited
the variance in the hidden states to trigger compliance.

Our PHMM based trajectory encoding and GMR based trajectory reproduction
approach was shown to be effective to extrapolate outside the demonstrated range of
a single parameter. On the other hand, PHMMs in general allow trajectory encoding
based on a combination of linear relations of parameter and hidden states for multiple
parameters. In our pick-and-place experiment, one can imagine including different heights
for the pairs of obstacles, and the location of the object to the parameter set. We
plan to investigate learning more complex relations that allow more complex tasks in
the future. Additionally, we plan to investigate learning of non-linear relations between
environment properties and the centers of PHMMs through exploiting various kernels,
and study methods that also combine the covariance matrices.®® While learning the
environment-action relations, the properties of the environment, such as the position of
the handle or the height of the block, are directly provided to our model. While perceiving
these properties is not in the scope of this paper and is mostly straightforward using
computer vision techniques, selection of the relevant set of features from possibly infinite
number of features is a challenging and open problem. Physical simulators can be used
to systematically change different parts of the environment and verify if the features
extracted from the corresponding part have any relation with the action. This in turn
requires the capability to fully model the environment, which is not very difficult with the
current technology just from the perception of the environment. The aim of our H2020
project IMAGINE (https://imagine-h2020.eu) is to enable robots to understand the
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structure of their environment and how it is affected by its actions through integrating
generative models and physics simulators.
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